Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cleft Volume Estimation and Maxilla Completion Using Cascaded Deep Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

In this paper, we propose an end-to-end cascaded deep neural network based-framework for the prediction of cleft volume and maxilla completion in the alveolar cleft grafting procedures. We devise the coupled cascaded deformable volumetric registration and cleft prediction networks with progressively refined cleft masks. The framework can be stacked on an existing volumetric registration network for partial registration between the template volume with the complete maxilla and the one with cleft lips and palates (CLP). Instead of one-shot registration-based volume completion for the cleft volume prediction, we present a cascaded registration network to accommodate coarse-to-fine volumetric transformations, enabling the refinement of the cleft volume and fine-tuning of cleft prediction network. The resulting dense displacement fields facilitate the cleft defect location and virtual maxilla completion. The iteratively updated cleft volume from the partial registration is utilized to refine the end-to-end cleft prediction network, which avoids the Boolean operation-based cleft estimation in the online testing process. We devise an alternating optimization approach to fine-tune the registration and cleft prediction networks. Qualitative and quantitative comparisons of the proposed approach on clinically-obtained CLP CBCT images demonstrate that our method is effective for cleft volume estimation and virtual maxilla completion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. arXiv preprint arXiv:1707.02392 (2017)

  2. Amirlak, B., Tang, C.J., Becker, D., Palomo, J.M., Gosain, A.K.: Volumetric analysis of simulated alveolar cleft defects and bone grafts using cone beam computed tomography. Plast. Reconstr. Surg. 131(4), 854–859 (2013)

    Article  Google Scholar 

  3. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5868–5877 (2017)

    Google Scholar 

  7. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  8. De Mulder, D., Cadenas de Llano-Pérula, M., Jacobs, R., Verdonck, A., Willems, G.: Three-dimensional radiological evaluation of secondary alveolar bone grafting in cleft lip and palate patients: a systematic review. Dentomaxillofacial Radiol. 48(1) (2019). https://doi.org/10.1259/dmfr.20180047

  9. De Ruiter, A., Janssen, N., Van Es, R., Frank, M., Meijer, G., Koole, R., Rosenberg, T.: Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: a pilot study. Cleft Palate-Craniofac. J. 52(3), 336–340 (2015)

    Article  Google Scholar 

  10. Feng, B., Jiang, M., Xu, X., Li, J.: A new method of volumetric assessment of alveolar bone grafting for cleft patients using cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 124(2), e171–e182 (2017)

    Article  Google Scholar 

  11. Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 85–93 (2017)

    Google Scholar 

  12. Janssen, N.G., et al.: A novel semi-automatic segmentation protocol for volumetric assessment of alveolar cleft grafting procedures. J. Cranio-Maxillofac. Surg. 45(5), 685–689 (2017)

    Article  Google Scholar 

  13. Linderup, B.W., Küseler, A., Jensen, J., Cattaneo, P.M.: A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate-Craniofac. J. 52(3), 47–55 (2015)

    Article  Google Scholar 

  14. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2018)

    Google Scholar 

  15. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

    Google Scholar 

  16. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    Chapter  Google Scholar 

  17. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  18. Shawky, H., Seifeldin, S.A.: Does platelet-rich fibrin enhance bone quality and quantity of alveolar cleft reconstruction? Cleft Palate-Craniofac. J. 53(5), 597–606 (2016)

    Article  Google Scholar 

  19. Shirota, T., Kurabayashi, H., Ogura, H., Seki, K., Maki, K., Shintani, S.: Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int. J. Oral Maxillofac. Surg. 39(9), 904–908 (2010)

    Article  Google Scholar 

  20. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)

    Google Scholar 

  21. Stasiak, M., Wojtaszek-Słomińska, A., Racka-Pilszak, B.: Current methods for secondary alveolar bone grafting assessment in cleft lip and palate patients - a systematic review. J. Cranio-Maxillofac. Surg. 47(4), 578–585 (2019)

    Article  Google Scholar 

  22. Stutz, D., Geiger, A.: Learning 3D shape completion from laser scan data with weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1955–1964 (2018)

    Google Scholar 

  23. Wang, W., Huang, Q., You, S., Yang, C., Neumann, U.: Shape inpainting using 3D generative adversarial network and recurrent convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2298–2306 (2017)

    Google Scholar 

  24. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  25. Xi, T., Schreurs, R., Heerink, W.J., Berge, S.J., Maal, T.J.: A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT). PLoS ONE 9(11), e111126 (2014)

    Article  Google Scholar 

  26. Zhang, Y., Pei, Y., Guo, Y., Ma, G., Xu, T., Zha, H.: Fully convolutional network for consistent voxel-wise correspondence. In: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020) (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC 61876008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Pei, Y., Guo, Y., Chen, S., Xu, T., Zha, H. (2020). Cleft Volume Estimation and Maxilla Completion Using Cascaded Deep Neural Networks. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics