Abstract
In this paper, we propose an end-to-end cascaded deep neural network based-framework for the prediction of cleft volume and maxilla completion in the alveolar cleft grafting procedures. We devise the coupled cascaded deformable volumetric registration and cleft prediction networks with progressively refined cleft masks. The framework can be stacked on an existing volumetric registration network for partial registration between the template volume with the complete maxilla and the one with cleft lips and palates (CLP). Instead of one-shot registration-based volume completion for the cleft volume prediction, we present a cascaded registration network to accommodate coarse-to-fine volumetric transformations, enabling the refinement of the cleft volume and fine-tuning of cleft prediction network. The resulting dense displacement fields facilitate the cleft defect location and virtual maxilla completion. The iteratively updated cleft volume from the partial registration is utilized to refine the end-to-end cleft prediction network, which avoids the Boolean operation-based cleft estimation in the online testing process. We devise an alternating optimization approach to fine-tune the registration and cleft prediction networks. Qualitative and quantitative comparisons of the proposed approach on clinically-obtained CLP CBCT images demonstrate that our method is effective for cleft volume estimation and virtual maxilla completion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. arXiv preprint arXiv:1707.02392 (2017)
Amirlak, B., Tang, C.J., Becker, D., Palomo, J.M., Gosain, A.K.: Volumetric analysis of simulated alveolar cleft defects and bone grafts using cone beam computed tomography. Plast. Reconstr. Surg. 131(4), 854–859 (2013)
Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5868–5877 (2017)
Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82
De Mulder, D., Cadenas de Llano-Pérula, M., Jacobs, R., Verdonck, A., Willems, G.: Three-dimensional radiological evaluation of secondary alveolar bone grafting in cleft lip and palate patients: a systematic review. Dentomaxillofacial Radiol. 48(1) (2019). https://doi.org/10.1259/dmfr.20180047
De Ruiter, A., Janssen, N., Van Es, R., Frank, M., Meijer, G., Koole, R., Rosenberg, T.: Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: a pilot study. Cleft Palate-Craniofac. J. 52(3), 336–340 (2015)
Feng, B., Jiang, M., Xu, X., Li, J.: A new method of volumetric assessment of alveolar bone grafting for cleft patients using cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 124(2), e171–e182 (2017)
Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 85–93 (2017)
Janssen, N.G., et al.: A novel semi-automatic segmentation protocol for volumetric assessment of alveolar cleft grafting procedures. J. Cranio-Maxillofac. Surg. 45(5), 685–689 (2017)
Linderup, B.W., Küseler, A., Jensen, J., Cattaneo, P.M.: A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate-Craniofac. J. 52(3), 47–55 (2015)
Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2018)
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)
Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15
Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20
Shawky, H., Seifeldin, S.A.: Does platelet-rich fibrin enhance bone quality and quantity of alveolar cleft reconstruction? Cleft Palate-Craniofac. J. 53(5), 597–606 (2016)
Shirota, T., Kurabayashi, H., Ogura, H., Seki, K., Maki, K., Shintani, S.: Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int. J. Oral Maxillofac. Surg. 39(9), 904–908 (2010)
Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)
Stasiak, M., Wojtaszek-Słomińska, A., Racka-Pilszak, B.: Current methods for secondary alveolar bone grafting assessment in cleft lip and palate patients - a systematic review. J. Cranio-Maxillofac. Surg. 47(4), 578–585 (2019)
Stutz, D., Geiger, A.: Learning 3D shape completion from laser scan data with weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1955–1964 (2018)
Wang, W., Huang, Q., You, S., Yang, C., Neumann, U.: Shape inpainting using 3D generative adversarial network and recurrent convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2298–2306 (2017)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Xi, T., Schreurs, R., Heerink, W.J., Berge, S.J., Maal, T.J.: A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT). PLoS ONE 9(11), e111126 (2014)
Zhang, Y., Pei, Y., Guo, Y., Ma, G., Xu, T., Zha, H.: Fully convolutional network for consistent voxel-wise correspondence. In: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020) (2020)
Acknowledgments
This work was supported by NSFC 61876008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Pei, Y., Guo, Y., Chen, S., Xu, T., Zha, H. (2020). Cleft Volume Estimation and Maxilla Completion Using Cascaded Deep Neural Networks. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-59861-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59860-0
Online ISBN: 978-3-030-59861-7
eBook Packages: Computer ScienceComputer Science (R0)