Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semi-supervised Segmentation with Self-training Based on Quality Estimation and Refinement

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Building a large dataset with high-quality annotations for medical image segmentation is time-consuming and highly depends on expert knowledge. Therefore semi-supervised segmentation has been investigated by utilizing a small set of labeled data and a large set of unlabeled data with generated pseudo labels, but the quality of pseudo labels is crucial since bad labels may lead to even worse segmentation. In this paper, we propose a novel semi-supervised segmentation framework which can automatically estimate and refine the quality of pseudo labels, and select only those good samples to expand the training set for self-training. Specifically the quality is automatically estimated in the view of shape and semantic confidence using variational auto-encoder (VAE) and CNN based network. And, the selected labels are refined in an adversarial way by distinguishing whether a label is the ground truth mask or not at pixel level. Our method is evaluated on the established neuroblastoma(NB) and BraTS18 dataset and outperforms other state-of-the-art semi-supervised medical image segmentation methods. We can achieve a fully supervised performance while requiring \(\sim \)4x less annotation effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Baur, C., Albarqouni, S., Navab, N.: Semi-supervised deep learning for fully convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 311–319. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_36

    Chapter  Google Scholar 

  4. Li, X., et al.: Transformation consistent self-ensembling model for semi-supervised medical image segmentation. arXiv preprint (2019). arXiv:1903.00348

  5. Chen, S., Bortsova, G., García-Uceda Juárez, A., van Tulder, G., de Bruijne, M.: Multi-task attention-based semi-supervised learning for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 457–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_51

    Chapter  Google Scholar 

  6. Peng, J., et al.: Deep co-training for semi-supervised image segmentation. arXiv preprint (2019). arXiv:1903.11233

  7. Zhou, Y., Wang, Y., et al.: Semi-supervised multi-organ segmentation via multi-planar co-training. arXiv preprint (2018). arXiv:1804.02586

  8. Fu, Y., et al.: More unlabelled data or label more data? a study on semi-supervised laparoscopic image segmentation. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 173–180. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_20

    Chapter  Google Scholar 

  9. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  10. You, X., Peng, Q., Yuan, Y., Cheung, Y.M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44(10–11), 2314–2324 (2011)

    Article  Google Scholar 

  11. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_43

    Chapter  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556

  13. Hung, W.-C., et al.: Adversarial learning for semi-supervised semantic segmentation. arXiv preprint (2018). arXiv:1802.07934

  14. Keras: Deep learning library for theano and tensorflow (2015). http://keras.io

  15. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  16. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: CVPR, pp. 4119–4128 (2018)

    Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyun Zhang or Yumin Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z. et al. (2020). Semi-supervised Segmentation with Self-training Based on Quality Estimation and Refinement. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics