Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An End-to-End Learnable Flow Regularized Model for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

  • 3534 Accesses

Abstract

Many segmentation tasks for biomedical images can be modeled as the minimization of an energy function and solved by a class of max-flow and min-cut optimization algorithms. However, the segmentation accuracy is sensitive to the contrasting of semantic features of different segmenting objects, as the traditional energy function usually uses hand-crafted features in their energy functions. To address these limitations, we propose to incorporate end-to-end trainable neural network features into the energy functions. Our deep neural network features are extracted from the down-sampling and up-sampling layers with skip-connections of a U-net. In the inference stage, the learned features are fed into the energy functions. And the segmentations are solved in a primal-dual form by ADMM solvers. In the training stage, we train our neural networks by optimizing the energy function in the primal form with regularizations on the min-cut and flow-conservation functions, which are derived from the optimal conditions in the dual form. We evaluate our methods, both qualitatively and quantitatively, in a brain tumor segmentation task. As the energy minimization model achieves a balance on sensitivity and smooth boundaries, we would show how our segmentation contours evolve actively through iterations as ensemble references for doctor diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  3. Chen, L., Wu, Y., DSouza, A.M., Abidin, A.Z., Wismüller, A., Xu, C.: MRI tumor segmentation with densely connected 3D CNN. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105741F. International Society for Optics and Photonics (2018)

    Google Scholar 

  4. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)

    Article  Google Scholar 

  5. Dey, R., Hong, Y.: CompNet: complementary segmentation network for brain MRI extraction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 628–636. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_72

    Chapter  Google Scholar 

  6. Ganaye, P.-A., Sdika, M., Benoit-Cattin, H.: Semi-supervised learning for segmentation under semantic constraint. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 595–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_68

    Chapter  Google Scholar 

  7. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Roy. Stat. Soc.: Ser. B (Methodol.) 51(2), 271–279 (1989)

    Google Scholar 

  8. Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D CNNs for segmentation of brain lesions in multi-modal MRI. In: Proceeding of Isles Challenge, MICCAI (2015)

    Google Scholar 

  9. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  10. Karimaghaloo, Z., Arnold, D.L., Arbel, T.: Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images. Med. Image Anal. 27, 17–30 (2016)

    Article  Google Scholar 

  11. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  12. Le, T.H.N., Gummadi, R., Savvides, M.: Deep recurrent level set for segmenting brain tumors. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 646–653. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_74

    Chapter  Google Scholar 

  13. Mangasarian, O.L.: Nonlinear Programming. SIAM (1994)

    Google Scholar 

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  15. Qin, Y., et al.: Autofocus layer for semantic segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 603–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_69

    Chapter  Google Scholar 

  16. Spitzer, H., Kiwitz, K., Amunts, K., Harmeling, S., Dickscheid, T.: Improving cytoarchitectonic segmentation of human brain areas with self-supervised Siamese networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 663–671. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_76

    Chapter  Google Scholar 

  17. Yuan, J., Bae, E., Tai, X.-C.: A study on continuous max-flow and min-cut approaches. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2217–2224. IEEE (2010)

    Google Scholar 

  18. Zhou, C., Ding, C., Lu, Z., Wang, X., Tao, D.: One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 637–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchen Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Ji, Z., Gao, M. (2020). An End-to-End Learnable Flow Regularized Model for Brain Tumor Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics