Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhanced MRI Reconstruction Network Using Neural Architecture Search

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

The accurate reconstruction of under-sampled magnetic resonance imaging (MRI) data using modern deep learning technology, requires significant effort to design the necessary complex neural network architectures. The cascaded network architecture for MRI reconstruction has been widely used, while it suffers from the “vanishing gradient” problem when the network becomes deep. In addition, the homogeneous architecture degrades the representation capacity of the network. In this work, we present an enhanced MRI reconstruction network using a residual in residual basic block. For each cell in the basic block, we use the differentiable neural architecture search (NAS) technique to automatically choose the optimal operation among eight variants of the dense block. This new heterogeneous network is evaluated on two publicly available datasets and outperforms all current state-of-the-art methods, which demonstrates the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  2. Bender, G.: Understanding and simplifying one-shot architecture search (2019)

    Google Scholar 

  3. Cai, H., Zhu, L., Han, S.: Proxylessnas: direct neural architecture search on target task and hardware. arXiv preprint (2018). arXiv:1812.00332

  4. Huang, J., Zhang, S., Metaxas, D.: Efficient MR image reconstruction for compressed MR imaging. Med. Image Anal. 15(5), 670–679 (2011)

    Article  Google Scholar 

  5. Huang, Q., Chen, X., Metaxas, D., Nadar, M.S.: Brain segmentation from k-space with end-to-end recurrent attention network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 275–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_31

    Chapter  Google Scholar 

  6. Huang, Q., Yang, D., Qu, H., Yi, J., Wu, P., Metaxas, D.: Dynamic MRI reconstruction with motion-guided network. In: International Conference on Medical Imaging with Deep Learning, vol. 102, pp. 275–284 (2019)

    Google Scholar 

  7. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019)

    Google Scholar 

  8. Huang, Q., Yang, D., Yi, J., Axel, L., Metaxas, D.: FR-Net: joint reconstruction and segmentation in compressed sensing cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, Nejib (eds.) FIMH 2019. LNCS, vol. 11504, pp. 352–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_38

    Chapter  Google Scholar 

  9. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)

    Article  Google Scholar 

  10. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 136–144 (2017)

    Google Scholar 

  11. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint (2018). arXiv:1806.09055

  12. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  13. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  14. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  15. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint (2018). arXiv:1802.03268

  16. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: International Conference on Information Processing in Medical Imaging, pp. 647–658. Springer (2017)

    Google Scholar 

  17. Souza, R., et al.: An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. NeuroImage 170, 482–494 (2018)

    Article  Google Scholar 

  18. Sun, L., Fan, Z., Huang, Y., Ding, X., Paisley, J.: Compressed sensing MRI using a recursive dilated network. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0 (2018)

    Google Scholar 

  20. Yang, A.C.Y., Kretzler, M., Sudarski, S., Gulani, V., Seiberlich, N.: Sparse reconstruction techniques in MRI: methods, applications, and challenges to clinical adoption. Invest. Radiol. 51(6), 349 (2016)

    Article  Google Scholar 

  21. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE J. Selected Topics Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  22. Zheng, H., Fang, F., Zhang, G.: Cascaded dilated dense network with two-step data consistency for MRI reconstruction. In: Advances in Neural Information Processing Systems, pp. 1742–1752 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q. et al. (2020). Enhanced MRI Reconstruction Network Using Neural Architecture Search. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics