Abstract
Chest radiography is the most common medical image examination for screening and diagnosis in hospitals. Automatic interpretation of chest X-rays at the level of an entry-level radiologist can greatly benefit work prioritization and assist in analyzing a larger population. Subsequently, several datasets and deep learning-based solutions have been proposed to identify diseases based on chest X-ray images. However, these methods are shown to be vulnerable to shift in the source of data: a deep learning model performing well when tested on the same dataset as training data, starts to perform poorly when it is tested on a dataset from a different source. In this work, we address this challenge of generalization to a new source by forcing the network to learn a source-invariant representation. By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation. Through pneumonia-classification experiments on multi-source chest X-ray datasets, we show that this algorithm helps in improving classification accuracy on a new source of X-ray dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint (2019). arXiv:1907.02893
Bluemke, D.A., et al.: Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board (2020)
Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 169–207. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_8
Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2(Mar), 499–526 (2002)
Chen, C., Dou, Q., Chen, H., Heng, P.-A.: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation. In: Shi, Y., Suk, H-Il, Liu, Mingxia (eds.) MLMI 2018. LNCS, vol. 11046, pp. 143–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_17
Coden, A., Gruhl, D., Lewis, N., Tanenblatt, M., Terdiman, J.: Spot the drug! An unsupervised pattern matching method to extract drug names from very large clinical corpora. In: 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology, pp. 33–39. IEEE (2012)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37, pp. 1180–1189. JMLR. org (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (cvpr), vol. 5, p. 6 (2015)
Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019). http://arxiv.org/abs/1901.07031
Johnson, A.E.W., et al.: MIMIC-CXR: a large publicly available database of labeled chest radiographs (2019). arXiv:1901.07042 [cs.CV]
Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
Kawaguchi, K., Bengio, Y., Verma, V., Kaelbling, L.P.: Towards understanding generalization via analytical learning theory. arXiv preprint (2018). arXiv:1802.07426
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. CoRR abs/1706.02515 (2017). http://arxiv.org/abs/1706.02515
Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: Mmd gan: towards deeper understanding of moment matching network. In: Advances in Neural Information Processing Systems, pp. 2203–2213 (2017)
Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015)
Loper, E., Bird, S.: NLTK: the natural language toolkit (2002). arXiv:cs/0205028 [cs.CL]
Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. arXiv preprint (2019). arXiv:1911.07661
McAllester, D.A.: Some pac-bayesian theorems. Mach. Learn. 37(3), 355–363 (1999)
McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)
Moradi, M., Madani, A., Gur, Y., Guo, Y., Syeda-Mahmood, T.: Bimodal network architectures for automatic generation of image annotation from text. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, Gabor (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 449–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_51
Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint (2017). arXiv:1711.05225
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Advances in Neural Information Processing Systems, pp. 2110–2118 (2016)
Syeda-Mahmood, T., et al.: Chest x-ray report generation through fine-grained label learning. MICCAI 2020, arXiv preprint (2020). arXiv:2007.13831
Vapnik, V.: The Nature of Statistical Learning Theory. Springer science & business media, Berlin (2013)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2524–2533 (2017)
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference in Learning and Representation (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ghimire, S., Kashyap, S., Wu, J.T., Karargyris, A., Moradi, M. (2020). Learning Invariant Feature Representation to Improve Generalization Across Chest X-Ray Datasets. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_65
Download citation
DOI: https://doi.org/10.1007/978-3-030-59861-7_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59860-0
Online ISBN: 978-3-030-59861-7
eBook Packages: Computer ScienceComputer Science (R0)