Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Differentiating Operator Skill During Routine Fetal Ultrasound Scanning Using Probe Motion Tracking

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators’ personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsfresh: Time series feature extraction based on scalable hypothesis tests. https://tsfresh.readthedocs.io/en/latest/

  2. Ahmidi, N., et al.: String motif-based description of tool motion for detecting skill and gestures in robotic surgery. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 26–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_4

    Chapter  Google Scholar 

  3. Ahmidi, N., Ishii, M., Fichtinger, G., Gallia, G.L., Hager, G.D.: An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data. In: International Forum of Allergy & Rhinology, vol. 2, pp. 507–515. Wiley Online Library (2012)

    Google Scholar 

  4. Chen, H., et al.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inf. 19(5), 1627–1636 (2015)

    Article  Google Scholar 

  5. Cox, B., Beard, P.: Imaging techniques: super-resolution ultrasound. Nature 527(7579), 451 (2015)

    Article  Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  7. Hatala, R., Cook, D.A., Brydges, R., Hawkins, R.: Constructing a validity argument for the objective structured assessment of technical skills (OSATS): a systematic review of validity evidence. Adv. Health Sci. Educ. 20(5), 1149–1175 (2015)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kumar, R., et al.: Assessing system operation skills in robotic surgery trainees. Inter. J. Med. Robot. Comput. Assist. Surg. 8(1), 118–124 (2012)

    Article  Google Scholar 

  10. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  11. Salomon, L., et al.: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 37(1), 116–126 (2011)

    Article  Google Scholar 

  12. Salomon, L., et al.: ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. Official J. Int. Soc. Ultrasound Obstet. Gynecol. 41(1), 102 (2013)

    Article  Google Scholar 

  13. University of Oxford: PULSE: Perception ultrasound by learning sonographic experience. https://www.eng.ox.ac.uk/pulse/

  14. Vedula, S.S., Ishii, M., Hager, G.D.: Objective assessment of surgical technical skill and competency in the operating room. Annu. Rev. Biomed. Eng. 19, 301–325 (2017)

    Article  Google Scholar 

  15. Vrachnis, N., et al.: International society of ultrasound in obstetrics and gynecology (ISUOG)-the propagation of knowledge in ultrasound for the improvement of OB/GYN care worldwide: experience of basic ultrasound training in Oman. BMC Med. Educ. 19(1), 434 (2019)

    Article  Google Scholar 

  16. Zago, M., et al.: Educational impact of hand motion analysis in the evaluation of fast examination skills. Eur. J. Trauma Emerg. Surg. 1–8 (2019). https://doi.org/10.1007/s00068-019-01112-6

  17. Zappella, L., Béjar, B., Hager, G., Vidal, R.: Surgical gesture classification from video and kinematic data. Med. Image Anal. 17(7), 732–745 (2013)

    Article  Google Scholar 

  18. Zia, A., Essa, I.: Automated surgical skill assessment in RMIS training. Int. J. Comput. Assist. Radiol. Surg. 13(5), 731–739 (2018)

    Article  Google Scholar 

  19. Zia, A., Sharma, Y., Bettadapura, V., Sarin, E.L., Clements, M.A., Essa, I.: Automated assessment of surgical skills using frequency analysis. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 430–438. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_53

    Chapter  Google Scholar 

  20. Zia, A., et al.: Automated video-based assessment of surgical skills for training and evaluation in medical schools. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1623–1636 (2016)

    Article  Google Scholar 

  21. Ziesmann, M.T., et al.: Validation of hand motion analysis as an objective assessment tool for the focused assessment with sonography for trauma examination. J. Trauma Acute Care Surg. 79(4), 631–637 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the ERC (ERC-ADG-2015 694581, project PULSE), EPSRC (EP/M013774/1, Project Seebibyte), and the NIHR Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2020). Differentiating Operator Skill During Routine Fetal Ultrasound Scanning Using Probe Motion Tracking. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics