Abstract
Given a program analysis problem that consists of a program and a property of interest, we use an empirical approach to automatically construct a sequence of abstractions that approach an ideal abstraction suitable for solving that problem. This process begins with an infinite concrete domain that maps to a finite abstract cluster domain defined by statistical procedures. Given a set of properties expressed as formulas in a restricted and bounded variant of CTL, we can test the success of the abstraction with respect to a predefined performance measure. In addition, we can perform iterative abstraction-refinement of the clustering by tuning hyperparameters that determine the accuracy of the cluster representations (abstract states) and determine the number of clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The set of extended reals (\(\mathbb {R}^\ell \cup \{\top , \bot \}\) where for all \(x \in \mathbb {R}^\ell \), \(\bot< x <\top \)) with the usual ordering is a complete lattice. This case also works for our framework.
- 2.
Let \((X, \le )\) be a poset and \(A \subseteq X\). Then A is a downset of X if \(x \in X\), \(x \le y\), \(y \in A\) implies \(x \in A\).
- 3.
A meaningful code location refers to a statement that has a side-effect.
References
Alvin, C., Peterson, B., Mukhopadhyay, S.: StaticGen: static generation of UML sequence diagrams. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 173–190. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_10
Bielik, P., Raychev, V., Vechev, M.T.: PHOG: probabilistic model for code. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 2933–2942 (2016)
Bielik, P., Raychev, V., Vechev, M.: Learning a static analyzer from data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 233–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_12
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)
Chen, Y., et al.: PAC learning-based verification and model synthesis. In: Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016, pp. 714–724 (2016)
CIL: C intermediate language. https://people.eecs.berkeley.edu/~necula/cil/
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)
Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_9
Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. Formal Methods Syst. Des. 50(2–3), 168–206 (2017)
Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)
Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Senseof Data. Cambridge University Press, New York (2012)
Gehr, T., Dimitrov, D., Vechev, M.: Learning commutativity specifications. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_18
Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10
Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, 5–11 November 2006, pp. 117–127 (2006)
Ho, V.M., Alvin, C., Mukhopadhyay, S., Peterson, B., Lawson, J.: Empirical abstraction. Technical report (2020). https://rb.gy/ggllbr
Jobstmann, B., Leino, K.R.M. (eds.): VMCAI 2016. LNCS, vol. 9583. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5
Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: POPL, pp. 31–42 (2011)
LLVM: The LLVM project. https://llvm.org/
Monniaux, D.: Abstract interpretation of programs as Markov decision processes. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 237–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44898-5_13
Mukhopadhyay, S., Podelski, A.: Beyond region graphs: symbolic forward analysis of timed automata. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 232–244. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6_18
Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software property checking via static analysis and testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_17
Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)
Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, 13–17 June 2016, pp. 42–56 (2016)
Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of likely data preconditions over predicates by tree learning. In: Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, 20–24 July 2008, pp. 295–306 (2008)
Sharma, R.: Data-driven verification. Ph.D. thesis, Stanford (2016)
Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis. In: POPL, pp. 127–138 (2014)
Smith, M.J.A.: Probabilistic abstract interpretation of imperative programs using truncated normal distributions. Electr. Notes Theor. Comput. Sci. 220(3), 43–59 (2008)
Wasserman, L.: All of Nonparametric Statistics (Springer Texts in Statistics). Springer, New York (2006). https://doi.org/10.1007/0-387-30623-4
Yau, S.S., et al.: Automated situation-aware service composition in service-oriented computing. Int. J. Web Serv. Res. (IJWSR) 4(4), 59–82 (2007)
Zhang, X., Naik, M., Yang, H.: Finding optimum abstractions in parametric dataflow analysis. In: PLDI, pp. 365–376 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ho, V.M., Alvin, C., Mukhopadhyay, S., Peterson, B., Lawson, J.D. (2020). Empirical Abstraction. In: Deshmukh, J., Ničković, D. (eds) Runtime Verification. RV 2020. Lecture Notes in Computer Science(), vol 12399. Springer, Cham. https://doi.org/10.1007/978-3-030-60508-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-60508-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60507-0
Online ISBN: 978-3-030-60508-7
eBook Packages: Computer ScienceComputer Science (R0)