Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Empirical Abstraction

  • Conference paper
  • First Online:
Runtime Verification (RV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12399))

Included in the following conference series:

  • 888 Accesses

Abstract

Given a program analysis problem that consists of a program and a property of interest, we use an empirical approach to automatically construct a sequence of abstractions that approach an ideal abstraction suitable for solving that problem. This process begins with an infinite concrete domain that maps to a finite abstract cluster domain defined by statistical procedures. Given a set of properties expressed as formulas in a restricted and bounded variant of CTL, we can test the success of the abstraction with respect to a predefined performance measure. In addition, we can perform iterative abstraction-refinement of the clustering by tuning hyperparameters that determine the accuracy of the cluster representations (abstract states) and determine the number of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The set of extended reals (\(\mathbb {R}^\ell \cup \{\top , \bot \}\) where for all \(x \in \mathbb {R}^\ell \), \(\bot< x <\top \)) with the usual ordering is a complete lattice. This case also works for our framework.

  2. 2.

    Let \((X, \le )\) be a poset and \(A \subseteq X\). Then A is a downset of X if \(x \in X\), \(x \le y\), \(y \in A\) implies \(x \in A\).

  3. 3.

    A meaningful code location refers to a statement that has a side-effect.

References

  1. Alvin, C., Peterson, B., Mukhopadhyay, S.: StaticGen: static generation of UML sequence diagrams. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 173–190. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_10

    Chapter  Google Scholar 

  2. Bielik, P., Raychev, V., Vechev, M.T.: PHOG: probabilistic model for code. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 2933–2942 (2016)

    Google Scholar 

  3. Bielik, P., Raychev, V., Vechev, M.: Learning a static analyzer from data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 233–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_12

    Chapter  Google Scholar 

  4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., et al.: PAC learning-based verification and model synthesis. In: Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016, pp. 714–724 (2016)

    Google Scholar 

  6. CIL: C intermediate language. https://people.eecs.berkeley.edu/~necula/cil/

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  8. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_9

    Chapter  Google Scholar 

  9. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. Formal Methods Syst. Des. 50(2–3), 168–206 (2017)

    Article  Google Scholar 

  10. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

    Article  Google Scholar 

  11. Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Senseof Data. Cambridge University Press, New York (2012)

    Google Scholar 

  12. Gehr, T., Dimitrov, D., Vechev, M.: Learning commutativity specifications. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_18

    Chapter  Google Scholar 

  13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10

    Chapter  Google Scholar 

  14. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, 5–11 November 2006, pp. 117–127 (2006)

    Google Scholar 

  15. Ho, V.M., Alvin, C., Mukhopadhyay, S., Peterson, B., Lawson, J.: Empirical abstraction. Technical report (2020). https://rb.gy/ggllbr

  16. Jobstmann, B., Leino, K.R.M. (eds.): VMCAI 2016. LNCS, vol. 9583. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5

    Book  MATH  Google Scholar 

  17. Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: POPL, pp. 31–42 (2011)

    Google Scholar 

  18. LLVM: The LLVM project. https://llvm.org/

  19. Monniaux, D.: Abstract interpretation of programs as Markov decision processes. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 237–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44898-5_13

    Chapter  Google Scholar 

  20. Mukhopadhyay, S., Podelski, A.: Beyond region graphs: symbolic forward analysis of timed automata. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 232–244. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6_18

    Chapter  MATH  Google Scholar 

  21. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software property checking via static analysis and testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_17

    Chapter  Google Scholar 

  22. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)

    Article  MathSciNet  Google Scholar 

  23. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, 13–17 June 2016, pp. 42–56 (2016)

    Google Scholar 

  24. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of likely data preconditions over predicates by tree learning. In: Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, 20–24 July 2008, pp. 295–306 (2008)

    Google Scholar 

  25. Sharma, R.: Data-driven verification. Ph.D. thesis, Stanford (2016)

    Google Scholar 

  26. Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis. In: POPL, pp. 127–138 (2014)

    Google Scholar 

  27. Smith, M.J.A.: Probabilistic abstract interpretation of imperative programs using truncated normal distributions. Electr. Notes Theor. Comput. Sci. 220(3), 43–59 (2008)

    Article  Google Scholar 

  28. Wasserman, L.: All of Nonparametric Statistics (Springer Texts in Statistics). Springer, New York (2006). https://doi.org/10.1007/0-387-30623-4

  29. Yau, S.S., et al.: Automated situation-aware service composition in service-oriented computing. Int. J. Web Serv. Res. (IJWSR) 4(4), 59–82 (2007)

    Article  Google Scholar 

  30. Zhang, X., Naik, M., Yang, H.: Finding optimum abstractions in parametric dataflow analysis. In: PLDI, pp. 365–376 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supratik Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, V.M., Alvin, C., Mukhopadhyay, S., Peterson, B., Lawson, J.D. (2020). Empirical Abstraction. In: Deshmukh, J., Ničković, D. (eds) Runtime Verification. RV 2020. Lecture Notes in Computer Science(), vol 12399. Springer, Cham. https://doi.org/10.1007/978-3-030-60508-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60508-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60507-0

  • Online ISBN: 978-3-030-60508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics