Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Principal Semantic Feature Analysis with Covariance Attention

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1627 Accesses

Abstract

In this work, we present a new module for semantic segmentation. This new module is designed as a plug in module for the backbone networks to further boosting the segmentation performance using the principal semantic feature analysis with covariance attention. Specifically, the spatial and channel covariance attention module are designed respectively, which can filter noisy regions and help the CNN to adaptively extract the dominant semantic content. By using the proposed covariance attention modules, a covariance attention architecture is built over FCN. Experimental results demonstrate the substantial benefits brought by the proposed covariance attention scheme, and show that the covariance attention mechanism is feasible and effective for improving the accuracy of semantic segmentation.

Y. Chen—Student as the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)

    Article  Google Scholar 

  2. Jonathan Long, E.S., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 3431–3440 (2015)

    Google Scholar 

  3. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  4. Fisher Yu, V.K.: Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122 (2016)

  5. Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. Intell. Transp. Syst. 1–12 (2019)

    Google Scholar 

  6. Teichmann, M., Weber, M., Zöllner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving, In:IEEE Intelligent Vehicles Symposium, pp. 1013–1020 (2018)

    Google Scholar 

  7. Zifeng Wu, C.S., van den Hengel, A.: Bridging category-level and instance-level semantic image segmentation. arXiv:1605.06885 (2016)

  8. Zhou, Y., Sun, X., Zha, Z., Zeng, W.: Context-reinforced semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 4046–4055 (2019)

    Google Scholar 

  9. Sinha, A., Dolz, J.: Multi-scale guided attention for medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5168–5177 (2017)

    Google Scholar 

  12. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  13. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  14. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6230–6239 (2017)

    Google Scholar 

  15. Tete Xiao, Y.L., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  16. Huang, Z., et al.: CCNet: criss-cross attention for semantic segmentation. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  17. Fu, J., et al.: Dual attention network for scene segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Conference and Workshop on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Zhang, H., et al.: Context encoding for semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)

    Google Scholar 

  21. Liang, X., Xing, E., Zhou, H.: Dynamic-structured semantic propagation network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 752–761 (2018)

    Google Scholar 

  22. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  23. Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  24. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  25. Jian, Y., Zhang, D., Frangi, A.F., Jing-yu, Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)

    Article  Google Scholar 

  26. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)

    Article  Google Scholar 

  27. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. arXiv:1704.08545 (2018)

  28. Wang, Y., et al.: LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation. arXiv:1905.02423 (2019)

  29. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)

  30. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L: Semantic Image Segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062 (2014)

  31. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)

    Google Scholar 

  32. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269 (2017)

    Google Scholar 

  33. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

  34. Kirby, L.S.M.: Application of the KL procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)

    Article  Google Scholar 

  35. Jain, A.K., Duin, R.P.W., Jianchang, M.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)

    Article  Google Scholar 

  36. Zhang, D., Zhou, Z.-H.: (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69, 224–231 (2005)

    Article  Google Scholar 

  37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhou Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Liu, Y., Lasang, P., Sun, Q. (2020). Principal Semantic Feature Analysis with Covariance Attention. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics