Abstract
In this work, we present a new module for semantic segmentation. This new module is designed as a plug in module for the backbone networks to further boosting the segmentation performance using the principal semantic feature analysis with covariance attention. Specifically, the spatial and channel covariance attention module are designed respectively, which can filter noisy regions and help the CNN to adaptively extract the dominant semantic content. By using the proposed covariance attention modules, a covariance attention architecture is built over FCN. Experimental results demonstrate the substantial benefits brought by the proposed covariance attention scheme, and show that the covariance attention mechanism is feasible and effective for improving the accuracy of semantic segmentation.
Y. Chen—Student as the first author.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)
Jonathan Long, E.S., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 3431–3440 (2015)
Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)
Fisher Yu, V.K.: Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122 (2016)
Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. Intell. Transp. Syst. 1–12 (2019)
Teichmann, M., Weber, M., Zöllner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving, In:IEEE Intelligent Vehicles Symposium, pp. 1013–1020 (2018)
Zifeng Wu, C.S., van den Hengel, A.: Bridging category-level and instance-level semantic image segmentation. arXiv:1605.06885 (2016)
Zhou, Y., Sun, X., Zha, Z., Zeng, W.: Context-reinforced semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 4046–4055 (2019)
Sinha, A., Dolz, J.: Multi-scale guided attention for medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5168–5177 (2017)
Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6230–6239 (2017)
Tete Xiao, Y.L., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Huang, Z., et al.: CCNet: criss-cross attention for semantic segmentation. In: IEEE International Conference on Computer Vision (2019)
Fu, J., et al.: Dual attention network for scene segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Conference and Workshop on Neural Information Processing Systems, pp. 1097–1105 (2012)
Zhang, H., et al.: Context encoding for semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)
Liang, X., Xing, E., Zhou, H.: Dynamic-structured semantic propagation network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 752–761 (2018)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Jian, Y., Zhang, D., Frangi, A.F., Jing-yu, Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)
Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)
Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. arXiv:1704.08545 (2018)
Wang, Y., et al.: LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation. arXiv:1905.02423 (2019)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L: Semantic Image Segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062 (2014)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269 (2017)
Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17
Kirby, L.S.M.: Application of the KL procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)
Jain, A.K., Duin, R.P.W., Jianchang, M.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)
Zhang, D., Zhou, Z.-H.: (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69, 224–231 (2005)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y., Liu, Y., Lasang, P., Sun, Q. (2020). Principal Semantic Feature Analysis with Covariance Attention. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-60639-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60638-1
Online ISBN: 978-3-030-60639-8
eBook Packages: Computer ScienceComputer Science (R0)