Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Gaussian Kernel Similarity-Based Linear Optimization Model for Predicting miRNA-lncRNA Interactions

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 918 Accesses

Abstract

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two main functional regulation non-coding RNAs, which involves many important pathological and physiological procedures. Accumulating evidences demonstrated that the interactions between miRNAs and lncRNAs have great impact on modulations of gene expression that are related to many Human diseases. However, identification of miRNA-lncRNA interactions via bio-experimental methods suffers from high cost and time consuming. Thus, it is more and more popular for researchers to utilize computational methods in miRNA-lncRNA interactions prediction because of their high-performance. In this study, we propose a gaussian kernel similarity-based linear optimization model for predicting miRNA-lncRNA interactions. Specifically, gaussian kernel similarity method is employed to learn the miRNAs and lncRNAs similarities based on the observed heterogeneous network. Then, an integrated network is constructed by combining the observed heterogeneous network and the constructed similarities. Finally, a linear optimization model is trained to obtain the rating matrix for the unobserved links in the integrated network. To evaluate the performance of our proposed method, k-fold cross-validation (CV) and leave-one-out cross-validation (LOOCV) are implemented on the collected dataset. The experimental results show that the proposed model yields high AUCs of 0.8624, 0.9053, 0.9152 and 0.9236 in 2-fold, 5-fold, 10-fold CV and LOOCV, respectively. It is anticipated that our proposed method is promising and reliable to inferring the interactions between miRNAs and lncRNAs for further biological researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Google Scholar 

  2. Alvarez-Garcia, I., Miska, E.A.: MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005)

    Article  Google Scholar 

  3. Baena-Del Valle, J.A., et al.: MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J. Pathol. 244, 11–24 (2018)

    Article  Google Scholar 

  4. Gupta, R.A., et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)

    Article  Google Scholar 

  5. Clemson, C.M., McNeil, J.A., Willard, H.F., Lawrence, J.B.: XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996)

    Article  Google Scholar 

  6. Gong, J., Liu, W., Zhang, J., Miao, X., Guo, A.-Y.: lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 43, D181–D186 (2015)

    Article  Google Scholar 

  7. Marín, R.M., Vaníček, J.: Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 39, 19–29 (2011)

    Article  Google Scholar 

  8. Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P.P.: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011)

    Article  Google Scholar 

  9. Yan, Y., Zhang, F., Fan, Q., Li, X., Zhou, K.: Breast cancer-specific TRAIL expression mediated by miRNA response elements of let-7 and miR-122. Neoplasma 61, 672–679 (2014)

    Article  Google Scholar 

  10. Tan, J.Y., et al.: Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Res. 25, 655–666 (2015)

    Article  Google Scholar 

  11. Xia, T., et al.: Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  12. Guo, L.-H., Li, H., Wang, F., Yu, J., He, J.-S.: The tumor suppressor roles of miR-433 and miR-127 in gastric cancer. Int. J. Mol. Sci. 14, 14171–14184 (2013)

    Article  Google Scholar 

  13. Ballantyne, M., McDonald, R., Baker, A.: lncRNA/MicroRNA interactions in the vasculature. Clin. Pharmacol. Ther. 99, 494–501 (2016)

    Article  Google Scholar 

  14. Ma, G., Tang, M., Wu, Y., Xu, X., Pan, F., Xu, R.: LncRNAs and miRNAs: potential biomarkers and therapeutic targets for prostate cancer. Am. J. Transl. Res. 8, 5141 (2016)

    Google Scholar 

  15. Beermann, J., Piccoli, M.-T., Viereck, J., Thum, T.: Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325 (2016)

    Article  Google Scholar 

  16. Kumar, M., Goyal, R.: LncRNA as a therapeutic target for angiogenesis. Curr. Top. Med. Chem. 17, 1750–1757 (2017)

    Google Scholar 

  17. Huang, Y.: The novel regulatory role of lnc RNA-mi RNA-mRNA axis in cardiovascular diseases. J. Cell Mol. Med. 22, 5768–5775 (2018)

    Article  Google Scholar 

  18. Wang, L., et al.: LMTRDA: using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15, e1006865 (2019)

    Article  Google Scholar 

  19. Coordinators, N.R.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 45, D12 (2017)

    Article  Google Scholar 

  20. Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., Yang, J.-H.: starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)

    Google Scholar 

  21. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88, 265 (2000)

    Google Scholar 

  22. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L.: NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008)

    Article  Google Scholar 

  23. Huang, Y.-A., Chen, X., You, Z.-H., Huang, D.-S., Chan, K.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7, 25902 (2016)

    Article  Google Scholar 

  24. You, Z.-H., Lei, Y.-K., Gui, J., Huang, D.-S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26, 2744–2751 (2010)

    Article  Google Scholar 

  25. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: DBMDA: a unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations. Mol. Ther.-Nucleic Acids 19, 602–611 (2020)

    Article  Google Scholar 

  26. Wang, M.-N., You, Z.-H., Li, L.-P., Wong, L., Chen, Z.-H., Gan, C.-Z.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions. IEEE Access 8, 37578–37588 (2020)

    Article  Google Scholar 

  27. You, Z.-H., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13, e1005455 (2017)

    Article  Google Scholar 

  28. Wang, L., You, Z.-H., Huang, D.-S., Zhou, F.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 972–980 (2018)

    Google Scholar 

  29. Yi, H.-C., et al.: ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol. Ther.-Nucleic Acids 17, 1–9 (2019)

    Article  Google Scholar 

  30. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources. J. Transl. Med. 17, 260 (2019)

    Article  Google Scholar 

  31. You, Z., Wang, S., Gui, J., Zhang, S.: A novel hybrid method of gene selection and its application on tumor classification. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 1055–1068. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85984-0_127

    Chapter  Google Scholar 

  32. Wang, L., You, Z.-H., Li, L.-P., Zheng, K., Wang, Y.-B.: Predicting circRNA-disease associations using deep generative adversarial network based on multi-source fusion information. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 145–152. IEEE (2019)

    Google Scholar 

  33. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity (2018)

    Google Scholar 

  34. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., Yi, H.-C.: Prediction of self-interacting proteins from protein sequence information based on random projection model and fast Fourier transform. Int. J. Mol. Sci. 20, 930 (2019)

    Article  Google Scholar 

  35. Li, J., et al.: Using weighted extreme learning machine combined with scale-invariant feature transform to predict protein-protein interactions from protein evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)

    Google Scholar 

  36. Zhan, Z.-H., You, Z.-H., Zhou, Y., Li, L.-P., Li, Z.-W.: Efficient framework for predicting ncRNA-protein interactions based on sequence information by deep learning. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 337–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_41

    Chapter  Google Scholar 

  37. Wang, L., You, Z.-H., Li, Y.-M., Zheng, K., Huang, Y.-A.: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm. PLoS Comput. Biol. 16, e1007568 (2020)

    Article  Google Scholar 

  38. Wang, M.-N., You, Z.-H., Wang, L., Li, L.-P., Zheng, K.: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing (2020)

    Google Scholar 

  39. Yue, D., Liu, H., Huang, Y.: Survey of computational algorithms for microRNA target prediction. Curr. Genomics 10, 478–492 (2009)

    Article  Google Scholar 

  40. Guttman, M., Rinn, J.L.: Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012)

    Article  Google Scholar 

  41. Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Google Scholar 

  42. Betel, D., Koppal, A., Agius, P., Sander, C., Leslie, C.: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010)

    Article  Google Scholar 

  43. Wang, X.: Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30, 1377–1383 (2014)

    Article  Google Scholar 

  44. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007)

    Article  Google Scholar 

  45. Rennie, W., et al.: STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res. 42, W114–W118 (2014)

    Article  Google Scholar 

  46. Li, J., et al.: LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinform. 16, 806–812 (2015)

    Article  Google Scholar 

  47. Ab Mutalib, N.-S., Sulaiman, S.A., Jamal, R.: Computational tools for microRNA target prediction. In: Computational Epigenetics and Diseases, pp. 79–105. Elsevier (2019)

    Google Scholar 

  48. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34, 812–819 (2018)

    Article  Google Scholar 

  49. Yu, Z., Zhu, F., Tianl, G., Wang, H.: LCBNI: link completion bipartite network inference for predicting new lncRNA-miRNA interactions. In: 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 873–877. IEEE (2018)

    Google Scholar 

  50. Hu, P., Huang, Y.-A., Chan, K.C., You, Z.-H.: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. (2019)

    Google Scholar 

  51. Huang, Z.-A., Huang, Y.-A., You, Z.-H., Zhu, Z., Sun, Y.: Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph. BMC Med. Genomics 11, 17–27 (2018)

    Article  Google Scholar 

  52. Huang, Y.-A., You, Z.-H., Chen, X., Huang, Z.-A., Zhang, S., Yan, G.-Y.: Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 15, 209 (2017)

    Article  Google Scholar 

  53. Pech, R., Hao, D., Lee, Y.-L., Yuan, Y., Zhou, T.: Link prediction via linear optimization. Phys. A: Stat. Mech. Appl. 528, 121319 (2019)

    Article  MathSciNet  Google Scholar 

  54. Gong, J., Liu, W., Zhang, J., Miao, X., Guo, A.-Y.: lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 43, D181–D186 (2014)

    Article  Google Scholar 

  55. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34, 812–819 (2017)

    Article  Google Scholar 

  56. Wong, L., Huang, Y.A., You, Z.H., Chen, Z.H., Cao, M.Y.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell Mol. Med. 24, 79–87 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC Excellent Young Scholars Program, under Grants 61722212, in part by the National Science Foundation of China under Grants 61873212.

Author information

Authors and Affiliations

Authors

Contributions

L.W. conceived the project, developed the prediction method, designed the experiments, analyzed the result and wrote the manuscript. Z.H.Y. and Y.A.H analyzed the result and revised the manuscript. X.Z and M.Y.C. analyzed the result. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, L., You, ZH., Huang, YA., Zhou, X., Cao, MY. (2020). A Gaussian Kernel Similarity-Based Linear Optimization Model for Predicting miRNA-lncRNA Interactions. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics