Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Static and Dynamic Parameter Settings of Accelerated Particle Swarm Optimisation for Solving Course Scheduling Problem

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12341))

  • 1120 Accesses

Abstract

The university course timetabling problem (UCTP) is one of the most challenging scheduling problems and also classified to be a Non-deterministic Polynomial (NP)-hard problem. An Accelerated Particle Swarm Optimisation based Timetabling (APSOT) program was developed to generate the best-so-far timetables with the minimal total operating costs. Two new variants of Accelerated Particle Swarm Optimisation (APSO) including Static and Dynamic (S-APSO and D-APSO) were proposed and embedded into the APSOT tool. The analysis of variance on the experimental results indicated that the main effects and interactions of D-APSO were statistically significant with a 95% confidence interval. The S-APSO and Maurice Clerc PSO (MCPSO) outperformed the other variants of PSO for most datasets whereas the execute times required by all variants of PSO were slightly different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university course timetabling problem. Comput. Ind. Eng. 86, 43–59 (2015)

    Article  Google Scholar 

  2. Murray, K., Müller, T., Rudová, H.: Modeling and solution of a complex university course timetabling problem. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 189–209. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77345-0_13

    Chapter  Google Scholar 

  3. Yang, X.-S.: Swarm intelligence based algorithms: a critical analysis. Evol. Intell. 7, 17–28 (2014). https://doi.org/10.1007/s12065-013-0102-2

    Article  Google Scholar 

  4. Thepphakorn, T., Pongcharoen, P., Hicks, C.: An ant colony based timetabling tool. Int. J. Prod. Econ. 149, 131–144 (2014)

    Article  Google Scholar 

  5. Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainate, W., Pongcharoen, P.: Application of firefly algorithm and its parameter setting for job shop scheduling. J. Ind. Technol. 8, 49–58 (2012)

    Google Scholar 

  6. Dapa, K., Loreungthup, P., Vitayasak, S., Pongcharoen, P.: Bat algorithm, genetic algorithm and shuffled frog leaping algorithm for designing machine layout. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds.) MIWAI 2013. LNCS (LNAI), vol. 8271, pp. 59–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44949-9_6

    Chapter  Google Scholar 

  7. Pongcharoen, P., Chainate, W., Pongcharoen, S.: Improving artificial immune system performance: inductive bias and alternative mutations. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 220–231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85072-4_20

    Chapter  Google Scholar 

  8. Lewis, R.: A survey of metaheuristic-based techniques for University Timetabling problems. OR Spectr. 30, 167–190 (2008). https://doi.org/10.1007/s00291-007-0097-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011). https://doi.org/10.1007/s10462-010-9191-9

    Article  Google Scholar 

  10. Chen, R.M., Shih, H.F.: Solving university course timetabling problems using constriction particle swarm optimization with local search. Algorithms 6, 227–244 (2013)

    Article  Google Scholar 

  11. Thepphakorn, T., Pongcharoen, P.: Variants and parameters investigations of particle swarm optimisation for solving course timetabling problems. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11655, pp. 177–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26369-0_17

    Chapter  Google Scholar 

  12. Kanoh, H., Chen, S.: Particle swarm optimization with transition probability for timetabling problems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 256–265. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_27

    Chapter  Google Scholar 

  13. Ahandani, M.A., Vakil Baghmisheh, M.T.: Hybridizing genetic algorithms and particle swarm optimization transplanted into a hyper-heuristic system for solving university course timetabling problem. WSEAS Trans. Comput. 12, 128–143 (2013)

    Google Scholar 

  14. Oswald, C., Anand Deva Durai, C.: Novel hybrid PSO algorithms with search optimization strategies for a university course timetabling problem. In: Proceedings of the 5th International Conference on Advanced Computing, ICoAC 2013, pp. 77–85 (2014)

    Google Scholar 

  15. Ho, I.S.F., Safaai, D., Zaiton, M.H.S.: A combination of PSO and local search in university course timetabling problem. In: Proceedings of the International Conference on Computer Engineering and Technology, pp. 492–495 (2009)

    Google Scholar 

  16. Ho, S.F.I., Safaai, D., Zaiton, M.H.S.: A study on PSO-based university course timetabling problem. In: Proceedings of the International Conference on Advanced Computer Control, pp. 648–651 (2009)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  18. Yang, X.-S.: Nature-Inspired Optimization Algorithms. Elsevier, London (2014)

    MATH  Google Scholar 

  19. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Prob. Eng. 2015, 38 (2015)

    Google Scholar 

  20. Thepphakorn, T., Pongcharoen, P., Hicks, C.: Modifying regeneration mutation and hybridising clonal selection for evolutionary algorithms based timetabling tool. Math. Prob. Eng. 2015, 16 (2015)

    Article  Google Scholar 

  21. Fakhar, M.S., Kashif, S.A.R., Ain, N.U., Hussain, H.Z., Rasool, A., Sajjad, I.A.: Statistical performances evaluation of APSO and improved APSO for short term hydrothermal scheduling problem. Appl. Sci. 9, 2440 (2019)

    Article  Google Scholar 

  22. Adhikari, M., Srirama, S.N.: Multi-objective accelerated particle swarm optimization with a container-based scheduling for Internet-of-Things in cloud environment. J. Netw. Comput. Appl. 137, 35–61 (2019)

    Article  Google Scholar 

  23. Hussain, H.Z., Haider, A., Fakhar, M.S., Ahmad, J., Butt, M.A., Khokhar, K.S.: Short-term scheduling of non-cascaded hydro-thermal system with transmission losses using accelerated particle swarm optimization algorithm. Pak. J. Eng. Appl. Sci. 22, 20–29 (2018)

    Google Scholar 

  24. Fakhar, M.S., Kashif, S.A.R., Saqib, M.A., Mehmood, F., Hussain, H.Z.: Non-cascaded short-term pumped-storage hydro-thermal scheduling using accelerated particle swarm optimization. In: 2018 International Conference on Electrical Engineering (2018)

    Google Scholar 

  25. Adhikari, M., Amgoth, T.: Multi-objective accelerated particle swarm optimization technique for scientific workflows in IaaS cloud. In: 2018 International Conference on Advances in Computing, Communications and Informatics, pp. 1448–1454 (2018)

    Google Scholar 

  26. Hropko, D., Ivanecký, J., Turček, J.: Optimal dispatch of renewable energy sources included in virtual power plant using accelerated particle swarm optimization. In: 2012 ELEKTRO, Rajeck Teplice, pp. 196–200 (2012)

    Google Scholar 

  27. Yang, X.-S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Fong, S. (ed.) NDT 2011. CCIS, vol. 136, pp. 53–66. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22185-9_6

    Chapter  Google Scholar 

  28. Bettinelli, A., Cacchiani, V., Roberti, R., Toth, P.: An overview of curriculum-based course timetabling. TOP 23(2), 313–349 (2015). https://doi.org/10.1007/s11750-015-0366-z

    Article  MathSciNet  MATH  Google Scholar 

  29. Thepphakorn, T., Pongcharoen, P.: Heuristic ordering for ant colony based timetabling tool. J. Appl. Oper. Res. 5, 113–123 (2013)

    Google Scholar 

  30. Thepphakorn, T., Pongcharoen, P., Vitayasak, S.: A new multiple objective cuckoo search for university course timetabling problem. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds.) MIWAI 2016. LNCS (LNAI), vol. 10053, pp. 196–207. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49397-8_17

    Chapter  Google Scholar 

Download references

Acknowledgements

The second author would like to acknowledge Naresuan University Graduate School for granting Ph.D. scholarship. This work was also part of research project supported by the Thailand Science Research and Innovation (TSRI) and Office of the Higher Education Commission (OHEC) under grant number MRG6080066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pupong Pongcharoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thepphakorn, T., Sooncharoen, S., Pongcharoen, P. (2020). Static and Dynamic Parameter Settings of Accelerated Particle Swarm Optimisation for Solving Course Scheduling Problem. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2020. Lecture Notes in Computer Science(), vol 12341. Springer, Cham. https://doi.org/10.1007/978-3-030-60816-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60816-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60815-6

  • Online ISBN: 978-3-030-60816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics