Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crowdsourcing Trajectory Based Indoor Positioning Multisource Database Construction on Smartphones

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12473))

  • 624 Accesses

Abstract

The bottleneck of fingerprinting-based indoor localization method is the extensive human effort that is required to construct and update the database for indoor positioning. In this paper, we propose a crowdsourcing trajectory based indoor positioning multisource database construction method that can be used to collect fingerprints and construct the radio map by exploiting the trajectories of smartphone users. By integrating multisource information from the smartphone sensors (e.g., camera, accelerometer, and gyroscope), this system can accurately reconstruct the geometry of trajectories. After then, the location of trajectories can be spatially estimated in the reference coordinate system. The experimental results show that the average calibration error of the fingerprints is 0.67 m. A weighted k-nearest neighbor method (without any optimization) and image matching method are used to evaluate the performance of constructed multisource database. The average localization error of RSS based indoor positioning and image based positioning are 3.2 m and 1.2 m respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, A.Y., Wang, L.: Research on indoor localization algorithm based on WIFI signal fingerprinting and INS. In: International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). Xiamen, China, January 2018, pp. 206–209 (2018)

    Google Scholar 

  2. Namkyoung, L., Ahn, S., Han, D.: AMID: accurate magnetic indoor localization using deep learning. Sensors 18, 1598 (2018)

    Google Scholar 

  3. Chen, P., Kuang, Ye., Chen, X.: A UWB/Improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians. Sensors 17, 2065 (2017)

    Google Scholar 

  4. Díaz, E., Pérez, M.C., Gualda, D., Villadangos, J.M., Ureña, J., García, J.J.: Ultrasonic indoor positioning for smart environments: a mobile application. In: IEEE 4th Experiment@ International Conference, Faro, Algarve, Portugal, June 2017, pp. 280–285 (2017)

    Google Scholar 

  5. Bahl, P., Padmanabhan. V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of IEEE INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Tel Aviv, Israel, March 2000, pp. 775–784 (2000)

    Google Scholar 

  6. Youssef, M., Ashok, A.: The horus WLAN location determination system. In: Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services. ACM, 2005, pp. 205–218 (2005)

    Google Scholar 

  7. He, S., Chan, S.: Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tutor. 18, 466–490 (2017)

    Article  Google Scholar 

  8. Tao, L., Xing, Z., Qingquan, L., Zhixiang, F.: A visual-based approach for indoor radio map construction using smartphones. Sensors 17, 1790 (2017)

    Article  Google Scholar 

  9. THOMPSONS. IndoorAtlas. http://www.Indooratlas.com

  10. Ravi, N., Shankar, P., Frankel, A., Iftode, L.: Indoor localization using camera phones. In: IEEE Workshop on Mobile Computing Systems & Applications. Orcas Island, WA, USA, August 2006, pp. 1–7

    Google Scholar 

  11. Chen, Y., Chen, R., Liu, M., Xiao, A., Wu, D., Zhao, S.: Indoor visual positioning aided by cnn-based image retrieval: training-free, 3D modeling-free. Sensors 18, 2692 (2018)

    Article  Google Scholar 

  12. Ruotsalainen, L., Kuusniemi, H., Bhuiyan, M.Z.H., Chen, L., Chen, R.: A two-dimensional pedestrian navigation solution aided with a visual gyroscope and a visual odometer. GPS Solut. 17, 575–586 (2013)

    Article  Google Scholar 

  13. Argyriou, V., Del Rincón, J.M., Villarini, B.: Structure from Motion. Wiley, Chichester (2015)

    Google Scholar 

  14. Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International Conference on 3DV-Conference. IEEE Computer Society (2013)

    Google Scholar 

  15. Yao, L., Feng, H., Zhu, Y.: An architecture of optimised SIFT feature detection for an FPGA implementation of an image matcher. In: International Conference on Field-Programmable Technology, 2009. FPT 2009. IEEE (2010)

    Google Scholar 

  16. Li, Y., Zhuang, Y., Lan, H., et al.: A Hybrid WiFi/Magnetic Matching/PDR approach for indoor navigation with smartphone sensors. IEEE Commun. Lett. 20(1), 169–172 (2015)

    Article  Google Scholar 

  17. Torr, P.H.S., Zisserman, A.: Vision Algorithms: Theory and Practice. Springer, Heidelberg (2000). 1883, https://doi.org/10.1007/3-540-44480-7

  18. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision - Volume Part I. Springer, Heidelberg (2006)

    Google Scholar 

  19. Ravi, N., Shankar, P., Frankel, A., et al.: Indoor localization using camera phones. In: IEEE Workshop on Mobile Computing Systems & Applications. IEEE (2006)

    Google Scholar 

  20. Liang, J.Z., Corso, N., Turner, E., et al.: Image based localization in indoor environments. In: Fourth International Conference on Computing for Geospatial Research & Application. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Liu, T., Li, Q., Fang, Z. (2020). Crowdsourcing Trajectory Based Indoor Positioning Multisource Database Construction on Smartphones. In: Di Martino, S., Fang, Z., Li, KJ. (eds) Web and Wireless Geographical Information Systems. W2GIS 2020. Lecture Notes in Computer Science(), vol 12473. Springer, Cham. https://doi.org/10.1007/978-3-030-60952-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60952-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60951-1

  • Online ISBN: 978-3-030-60952-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics