Abstract
Ontology merging systems enable the reusability and interoperability of existing knowledge. Ideally, they allow their users to specify which characteristics the merged ontology should have. In prior work, we have identified Generic Merge Requirements (GMRs) reflecting such characteristics. However, not all of them can be met simultaneously. Thus, if a system allows users to select which GMRs should be met, it needs a way to deal with incompatible GMRs. In this paper, we analyze in detail which GMRs are (in-)compatible, and propose a graph based approach to determining and ranking maximum compatible supersets of user-specified GMRs. Our analysis shows that this is indeed feasible to detect the compatible supersets of the given GMRs that can be fulfilled simultaneously. This approach is implemented in the open source \(\mathcal {C}\)o\(\mathcal {M}\)erger tool.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the given \(\mathcal {U}\), there are 18 different maximal compatible sets. To make the example concise, we consider 3 compatible sets, only.
- 2.
Detail of GMR implementation: http://comerger.uni-jena.de/requirement.jsp.
- 3.
Ontologies available at: https://github.com/fusion-jena/CoMerger/GMR.
References
Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB, pp. 862–873 (2003)
Raunich, S., Rahm, E.: Target-driven merging of taxonomies with ATOM. Inf. Syst. 42, 1–14 (2014)
Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_16
Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated schemas. In: ACM SIGMOD, pp. 833–846 (2008)
Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under RCC-5 algebraic articulations. In: ONISW, pp. 47–54. ACM (2008)
Ju, S.P., et al.: CreaDO-a methodology to create domain ontologies using parameter-based ontology merging techniques. In: MICAI, pp. 23–28. IEEE (2011)
Mahfoudh, M., Thiry, L., Forestier, G., Hassenforder, M.: Algebraic graph transformations for merging ontologies. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748, pp. 154–168. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11587-0_16
Noy, N.F., Musen, M.A.: The prompt suite: interactive tools for ontology merging and mapping. Int. J. Hum.-Comput. Stud. 59(6), 983–1024 (2003)
Makwana, A., Ganatra, A.: A known in advance, what ontologies to integrate? for effective ontology merging using k-means clustering. IJIES, 11(4) (2018)
Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: performance oriented schema mediation. Inf. Syst. 33(7), 637–657 (2008)
Radwan, A., Popa, L., Stanoi, I.R., Younis, A.: Top-k generation of integrated schemas based on directed and weighted correspondences. In: SIGMOD (2009)
El-Gohary, N.M., El-Diraby, T.E.: Merging architectural, engineering, and construction ontologies. J. Comput. Civil Eng. 25(2), 109–128 (2011)
Stumme, G., Maedche, A.: FCA-Merge: bottom-up merging of ontologies. In: IJCAI, pp. 225–230 (2001)
Priya, M., Kumar, C.A.: An approach to merge domain ontologies using granular computing. Granular Comput. 1–26 (2019). https://doi.org/10.1007/s41066-019-00193-3
Priya, M., Cherukuri, A.K.: A novel method for merging academic socialnetwork ontologies using formal concept analysis and hybrid semanticsimilarity measure. Libr. Hi Tech (2019)
Guzmán-Arenas, A., Cuevas, A.-D.: Knowledge accumulation through automatic merging of ontologies. Expert Syst. Appl. 37(3), 1991–2005 (2010)
Babalou, S., König-Ries, B.: GMRs: reconciliation of generic merge requirements in ontology integration. In: SEMANTICS Poster and Demo (2019)
Babalou, S., Grygorova, E., König-Ries, B.: CoMerger: a customizable online tool for building a consistent quality-assured merged ontology. In: In ESWC, Poster and Demo Track June 2020
Zhang, L.-Y., Ren, J.-D., Li, X.-W.: OIM-SM: a method for ontology integration based on semantic mapping. J. Intell. Fuzzy Syst. 32(3), 1983–1995 (2017)
Fahad, M., Moalla, N., Bouras, A.: Detection and resolution of semantic inconsistency and redundancy in an automatic ontology merging system. JIIS 39(2), 535–557 (2012)
Mahfoudh, M., Forestier, G., Hassenforder, M.: A benchmark for ontologies merging assessment. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS (LNAI), vol. 9983, pp. 555–566. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47650-6_44
Raunich, S., Rahm, E.: Towards a benchmark for ontology merging. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp. 124–133. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33618-8_20
Duchateau, F., Bellahsene, Z.: Measuring the quality of an integrated schema. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 261–273. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16373-9_19
Noy, N.F., et al.: Ontology development 101: A guide to creating your first ontology (2001)
Poveda-Villalon, M., Suarez-Figueroa, M.C., Gomez-Perez, A.: Validating ontologies with oops!, pp. 267–281 (2012)
Rector, A., et al.: Owl pizzas: practical experience of teaching owl-dl: common errors & common patterns. In: EKAW, pp. 63–81. Springer (2004)
Grygorova, E., Babalou, S., König-Ries, B.: Toward owl restriction reconciliation in merging knowledge. In: In ESWC, Poster and Demo Track, June 2020
Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. TCS 363(1), 28–42 (2006)
Acknowledgments
S. Babalou is supported by a scholarship from German Academic Exchange Service (DAAD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Babalou, S., Grygorova, E., König-Ries, B. (2020). What to Do When the Users of an Ontology Merging System Want the Impossible? Towards Determining Compatibility of Generic Merge Requirements. In: Keet, C.M., Dumontier, M. (eds) Knowledge Engineering and Knowledge Management. EKAW 2020. Lecture Notes in Computer Science(), vol 12387. Springer, Cham. https://doi.org/10.1007/978-3-030-61244-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-61244-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61243-6
Online ISBN: 978-3-030-61244-3
eBook Packages: Computer ScienceComputer Science (R0)