Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What to Do When the Users of an Ontology Merging System Want the Impossible? Towards Determining Compatibility of Generic Merge Requirements

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2020)

Abstract

Ontology merging systems enable the reusability and interoperability of existing knowledge. Ideally, they allow their users to specify which characteristics the merged ontology should have. In prior work, we have identified Generic Merge Requirements (GMRs) reflecting such characteristics. However, not all of them can be met simultaneously. Thus, if a system allows users to select which GMRs should be met, it needs a way to deal with incompatible GMRs. In this paper, we analyze in detail which GMRs are (in-)compatible, and propose a graph based approach to determining and ranking maximum compatible supersets of user-specified GMRs. Our analysis shows that this is indeed feasible to detect the compatible supersets of the given GMRs that can be fulfilled simultaneously. This approach is implemented in the open source \(\mathcal {C}\)o\(\mathcal {M}\)erger tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the given \(\mathcal {U}\), there are 18 different maximal compatible sets. To make the example concise, we consider 3 compatible sets, only.

  2. 2.

    Detail of GMR implementation: http://comerger.uni-jena.de/requirement.jsp.

  3. 3.

    Ontologies available at: https://github.com/fusion-jena/CoMerger/GMR.

References

  1. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB, pp. 862–873 (2003)

    Google Scholar 

  2. Raunich, S., Rahm, E.: Target-driven merging of taxonomies with ATOM. Inf. Syst. 42, 1–14 (2014)

    Article  Google Scholar 

  3. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_16

    Chapter  Google Scholar 

  4. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated schemas. In: ACM SIGMOD, pp. 833–846 (2008)

    Google Scholar 

  5. Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under RCC-5 algebraic articulations. In: ONISW, pp. 47–54. ACM (2008)

    Google Scholar 

  6. Ju, S.P., et al.: CreaDO-a methodology to create domain ontologies using parameter-based ontology merging techniques. In: MICAI, pp. 23–28. IEEE (2011)

    Google Scholar 

  7. Mahfoudh, M., Thiry, L., Forestier, G., Hassenforder, M.: Algebraic graph transformations for merging ontologies. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748, pp. 154–168. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11587-0_16

    Chapter  Google Scholar 

  8. Noy, N.F., Musen, M.A.: The prompt suite: interactive tools for ontology merging and mapping. Int. J. Hum.-Comput. Stud. 59(6), 983–1024 (2003)

    Article  Google Scholar 

  9. Makwana, A., Ganatra, A.: A known in advance, what ontologies to integrate? for effective ontology merging using k-means clustering. IJIES, 11(4) (2018)

    Google Scholar 

  10. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: performance oriented schema mediation. Inf. Syst. 33(7), 637–657 (2008)

    Article  Google Scholar 

  11. Radwan, A., Popa, L., Stanoi, I.R., Younis, A.: Top-k generation of integrated schemas based on directed and weighted correspondences. In: SIGMOD (2009)

    Google Scholar 

  12. El-Gohary, N.M., El-Diraby, T.E.: Merging architectural, engineering, and construction ontologies. J. Comput. Civil Eng. 25(2), 109–128 (2011)

    Article  Google Scholar 

  13. Stumme, G., Maedche, A.: FCA-Merge: bottom-up merging of ontologies. In: IJCAI, pp. 225–230 (2001)

    Google Scholar 

  14. Priya, M., Kumar, C.A.: An approach to merge domain ontologies using granular computing. Granular Comput. 1–26 (2019). https://doi.org/10.1007/s41066-019-00193-3

  15. Priya, M., Cherukuri, A.K.: A novel method for merging academic socialnetwork ontologies using formal concept analysis and hybrid semanticsimilarity measure. Libr. Hi Tech (2019)

    Google Scholar 

  16. Guzmán-Arenas, A., Cuevas, A.-D.: Knowledge accumulation through automatic merging of ontologies. Expert Syst. Appl. 37(3), 1991–2005 (2010)

    Article  Google Scholar 

  17. Babalou, S., König-Ries, B.: GMRs: reconciliation of generic merge requirements in ontology integration. In: SEMANTICS Poster and Demo (2019)

    Google Scholar 

  18. Babalou, S., Grygorova, E., König-Ries, B.: CoMerger: a customizable online tool for building a consistent quality-assured merged ontology. In: In ESWC, Poster and Demo Track June 2020

    Google Scholar 

  19. Zhang, L.-Y., Ren, J.-D., Li, X.-W.: OIM-SM: a method for ontology integration based on semantic mapping. J. Intell. Fuzzy Syst. 32(3), 1983–1995 (2017)

    Article  Google Scholar 

  20. Fahad, M., Moalla, N., Bouras, A.: Detection and resolution of semantic inconsistency and redundancy in an automatic ontology merging system. JIIS 39(2), 535–557 (2012)

    Google Scholar 

  21. Mahfoudh, M., Forestier, G., Hassenforder, M.: A benchmark for ontologies merging assessment. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS (LNAI), vol. 9983, pp. 555–566. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47650-6_44

    Chapter  Google Scholar 

  22. Raunich, S., Rahm, E.: Towards a benchmark for ontology merging. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp. 124–133. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33618-8_20

    Chapter  Google Scholar 

  23. Duchateau, F., Bellahsene, Z.: Measuring the quality of an integrated schema. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 261–273. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16373-9_19

    Chapter  Google Scholar 

  24. Noy, N.F., et al.: Ontology development 101: A guide to creating your first ontology (2001)

    Google Scholar 

  25. Poveda-Villalon, M., Suarez-Figueroa, M.C., Gomez-Perez, A.: Validating ontologies with oops!, pp. 267–281 (2012)

    Google Scholar 

  26. Rector, A., et al.: Owl pizzas: practical experience of teaching owl-dl: common errors & common patterns. In: EKAW, pp. 63–81. Springer (2004)

    Google Scholar 

  27. Grygorova, E., Babalou, S., König-Ries, B.: Toward owl restriction reconciliation in merging knowledge. In: In ESWC, Poster and Demo Track, June 2020

    Google Scholar 

  28. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. TCS 363(1), 28–42 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

S. Babalou is supported by a scholarship from German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Babalou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babalou, S., Grygorova, E., König-Ries, B. (2020). What to Do When the Users of an Ontology Merging System Want the Impossible? Towards Determining Compatibility of Generic Merge Requirements. In: Keet, C.M., Dumontier, M. (eds) Knowledge Engineering and Knowledge Management. EKAW 2020. Lecture Notes in Computer Science(), vol 12387. Springer, Cham. https://doi.org/10.1007/978-3-030-61244-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61244-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61243-6

  • Online ISBN: 978-3-030-61244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics