Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Impacts of Multiple Solutions on the Lackadaisical Quantum Walk Search Algorithm

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

The lackadaisical quantum walk is a graph search algorithm for 2D grids whose vertices have a self-loop of weight l. Since the technique depends considerably on this l, research efforts have been estimating the optimal value for different scenarios, including 2D grids with multiple solutions. However, specifically two previous works have used different stopping conditions for the simulations. Here, firstly, we show that these stopping conditions are not interchangeable. After doing such a pending investigation to define the stopping condition properly, we analyze the impacts of multiple solutions on the final results achieved by the technique, which is the main contribution of this work. In doing so, we demonstrate that the success probability is inversely proportional to the density of vertices marked as solutions and directly proportional to the relative distance between solutions. These relations presented here are guaranteed only for high values of the input parameters because, from different points of view, we show that a disturbed transition range exists in the small values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  Google Scholar 

  2. Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks on two-dimensional grid without amplitude amplification. In: Iwama, K., Kawano, Y., Murao, M. (eds.) TQC 2012. LNCS, vol. 7582, pp. 87–97. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35656-8_7

    Chapter  MATH  Google Scholar 

  3. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108. SIAM (2005)

    Google Scholar 

  4. Benioff, P.: Space searches with a quantum robot. In: Quantum Computation and Information (Washington, D.C., 2000), Contemporary Mathematics, vol. 305, pp. 1–12. American Mathematical Society, Providence (2002)

    Google Scholar 

  5. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  6. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70(4), 042312 (2004)

    Article  MathSciNet  Google Scholar 

  7. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  Google Scholar 

  8. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)

    Article  MathSciNet  Google Scholar 

  9. Giri, P.R., Korepin, V.: Lackadaisical quantum walk for spatial search. Mod. Phys. Lett. A 35(08), 2050043 (2019)

    Article  MathSciNet  Google Scholar 

  10. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  11. Høyer, P., Yu, Z.: Analysis of lackadaisical quantum walks. arXiv preprint arXiv:2002.11234 (2020)

  12. McMahon, D.: Quantum Computing Explained. Wiley, Hoboken (2007)

    Book  Google Scholar 

  13. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  14. Meyer, D.A., Wong, T.G.: Connectivity is a poor indicator of fast quantum search. Phys. Rev. Lett. 114(11), 110503 (2015)

    Article  Google Scholar 

  15. Nahimovs, N.: Lackadaisical quantum walks with multiple marked vertices. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 368–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_29

    Chapter  Google Scholar 

  16. Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. Int. J. Found. Comput. Sci. 29(04), 687–700 (2018)

    Article  MathSciNet  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th anniversary edn. Cambridge University Press, New York (2010)

    Google Scholar 

  18. Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6336-8

    Book  MATH  Google Scholar 

  19. Portugal, R., Fernandes, T.D.: Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians. Phys. Rev. A 95(4), 042341 (2017)

    Article  Google Scholar 

  20. Rhodes, M.L., Wong, T.G.: Search on vertex-transitive graphs by lackadaisical quantum walk. arXiv preprint arXiv:2002.11227 (2020)

  21. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks. arXiv preprint arXiv:1804.01446 (2018)

  22. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  Google Scholar 

  23. Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78(1), 012310 (2008)

    Article  Google Scholar 

  24. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A Math. Theor. 48(43), 435304 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wong, T.G.: Coined quantum walks on weighted graphs. J. Phys. A Math. Theor. 50(47), 475301 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 1–9 (2018). https://doi.org/10.1007/s11128-018-1840-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, New York (2008)

    Book  Google Scholar 

Download references

Acknowledgments

Science and Technology Support Foundation of Pernambuco (FACEPE) Brazil, Brazilian National Council for Scientific and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. A. de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Carvalho, J.H.A., de Souza, L.S., de Paula Neto, F.M., Ferreira, T.A.E. (2020). Impacts of Multiple Solutions on the Lackadaisical Quantum Walk Search Algorithm. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics