Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting the Evolution of COVID-19 Cases and Deaths Through a Correlations-Based Temporal Network

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

Given the most recent events involving the fast spreading of COVID-19, policy makers around the world have been challenged with the difficult task of developing efficient strategies to contain the dissemination of the disease among the population, sometimes by taking severe measures to restrict local activities, both socially and economically. Within this context, models which can help on predicting the spread evolution of COVID-19 in a specific region would surely help the authorities on their planning. In this paper, we introduce a semi-supervised regression model which makes use of a correlations-based temporal network, by considering the evolution of COVID-19 in different world regions, in order to predict the evolution of new confirmed cases and deaths in 27 federal units of Brazil. In this approach, each node in the network represents the COVID-19 time series in a specific region, and the edges are created according to the variations similarity between each pair of nodes, at each new time step. The results obtained, by predicting the weekly new confirmed cases and deaths in each region, are promising, with a median and mean absolute percentage error of 21% and 24%, respectively, when predicting new cases, and a median and mean absolute percentage error of 16% and 23%, respectively, when predicting new deaths, for the considered period.

This work is supported in part by the São Paulo State Research Foundation (FAPESP) under grant numbers 2015/50122-0 and 2013/07375-0, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the Brazilian National Council for Scientific and Technological Development (CNPq) under grant number 303199/2019-9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Qaness, M.A., Ewees, A.A., Fan, H., Abd El Aziz, M.: Optimization method for forecasting confirmed cases of COVID-19 in China. J. Clin. Med. 9(3), 674 (2020)

    Google Scholar 

  2. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the north American power grid. Phys. Rev. 69(2), 025103 (2004)

    Google Scholar 

  3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Aref, S., Neal, Z.: Detecting coalitions by optimally partitioning signed networks of political collaboration. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  6. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos, Solitons Fractals, 110017 (2020)

    Google Scholar 

  7. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. 235(2), 275–288 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brasil.IO: Covid19 - dataset - Brasil.IO. https://data.brasil.io/dataset/covid19.html. Accessed May 27, 2020

  9. Colliri, T., Ji, D., Pan, H., Zhao, L.: A network-based high level data classification technique. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  10. Colliri, T., Zhao, L.: Analyzing the bills-voting dynamics and predicting corruption-convictions among Brazilian congressmen through temporal networks. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  11. da F. Costa, L., et al.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)

    Google Scholar 

  12. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022 (2013)

    Google Scholar 

  13. Dezső, Z., Barabási, A.L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055103 (2002)

    Article  Google Scholar 

  14. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. (2020)

    Google Scholar 

  15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29(4) (1999)

    Google Scholar 

  16. Gao, X., et al.: Transmission of linear regression patterns between time series: from relationship in time series to complex networks. Phys. Rev. E 90(1), 012818 (2014)

    Article  Google Scholar 

  17. Harari, Y.N.: Sapiens: A Brief History of Humankind. Random House (2014)

    Google Scholar 

  18. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  19. Kostopoulos, G., Karlos, S., Kotsiantis, S., Ragos, O.: Semi-supervised regression: a recent review. J. Intell. Fuzzy Syst. 35(2), 1483–1500 (2018)

    Article  Google Scholar 

  20. Luna-Pla, I., Nicolás-Carlock, J.R.: Corruption and complexity: a scientific framework for the analysis of corruption networks. Appl. Netw. Sci. 5(1), 1–18 (2020). https://doi.org/10.1007/s41109-020-00258-2

    Article  Google Scholar 

  21. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  22. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  23. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  Google Scholar 

  24. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  25. Silva, T.C., Zhao, L.: Network-based high level data classification. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 954–970 (2012)

    Article  Google Scholar 

  26. Silva, T.C., Zhao, L.: Stochastic competitive learning in complex networks. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 385–398 (2012)

    Article  Google Scholar 

  27. Sporns, O.: Network analysis, complexity, and brain function. Complexity 8(1), 56–60 (2002)

    Article  MathSciNet  Google Scholar 

  28. Sun, X., Tan, Y., Wu, Q., Chen, B., Shen, C.: TM-Miner: TFS-based algorithm for mining temporal motifs in large temporal network. IEEE Access 7, 49778–49789 (2019)

    Article  Google Scholar 

  29. Tamara, D., Kristijan, P., Ljupcho, K.: Graphlets in multiplex networks. Sci. Rep. 10(1) (2020)

    Google Scholar 

  30. Thompson, W.H., Brantefors, P., Fransson, P.: From static to temporal network theory: applications to functional brain connectivity. Netw. Neurosci. 1(2), 69–99 (2017). https://doi.org/10.1162/NETN_a_00011

    Article  Google Scholar 

  31. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the structure, and allometry of plant vascular systems. Nature 400, 125–126 (2009)

    Google Scholar 

  32. Xubo, G., Qiusheng, Z., Vega-Oliveros, D.A., Leandro, A., Zhao, L.: Temporal network pattern identification by community modelling. Sci. Rep. 10(1) (2020)

    Google Scholar 

  33. Zhang, Y., Li, X., Xu, J., Vasilakos, A.V.: Human interactive patterns in temporal networks. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 214–222 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Colliri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colliri, T., Delbem, A.C.B., Zhao, L. (2020). Predicting the Evolution of COVID-19 Cases and Deaths Through a Correlations-Based Temporal Network. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics