Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tuning Deep Neural Network’s Hyperparameters Constrained to Deployability on Tiny Systems

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Abstract

Deep Neural Networks are increasingly deployed on tiny systems such as microcontrollers or embedded systems. Notwithstanding the recent success of Deep Learning, also enabled by the availability of Automated Machine Learning and Neural Architecture Search solutions, the computational requirements of the optimization of the structure and the hyperparameters of Deep Neural Networks usually far exceed what is available on tiny systems. Therefore, the deployability becomes critical when the learned model must be deployed on a tiny system. To overcome this critical issue, we propose a framework, based on Bayesian Optimization, to optimize the hyperparameters of a Deep Neural Network by dealing with black-box deployability constraints. Encouraging results obtained on a classification benchmark problem on a real microcontroller by STMicroelectronics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cloud.google.com/automl-tables?hl=uk.

  2. 2.

    https://aws.amazon.com/sagemaker/.

  3. 3.

    https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html.

  4. 4.

    https://github.com/Shahnawax/HAR-CNN-Keras.

  5. 5.

    http://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity.

  6. 6.

    https://keras.io/.

References

  1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  2. Miikkulainen, R., et al.: Evolving deep neural networks. arXiv:1703.00548, March 2017

  3. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Genetic and Evolutionary Computation Conference (2017)

    Google Scholar 

  4. Bianco, S., Buzzelli, M., Ciocca, G., Schettini, R.: Neural architecture search for image saliency fusion. Inf. Fusion 57, 89–101 (2020)

    Article  Google Scholar 

  5. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: International Conference on Learning Representations (2018b)

    Google Scholar 

  6. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: International Conference on Learning Representations (2017a)

    Google Scholar 

  7. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2018a)

    Google Scholar 

  8. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  9. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956, July 2019

    Google Scholar 

  10. Zela, A., Klein, A., Falkner, S., Hutter, F.: Towards automated deep learning: efficient joint neural architecture and hyperparameter search. In: ICML 2018 Workshop on AutoML (AutoML 2018) (2018)

    Google Scholar 

  11. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neural architecture search with Bayesian optimisation and optimal transport. arXiv:1802.07191, February 2018

  12. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. SO. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

    Book  MATH  Google Scholar 

  13. Oh, C., Tomczak, J., Gavves, E., Welling, M.: Combinatorial Bayesian optimization using the graph cartesian product. In: Advances in Neural Information Processing Systems, pp. 2910–2920 (2019)

    Google Scholar 

  14. Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. arXiv preprint arXiv:1806.08838 (2018)

  15. Elsken, T., Metzen, J. H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. arXiv preprint arXiv:1804.09081 (2018)

  16. Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., Sun, M.: DPP-Net: device-aware progressive search for pareto-optimal neural architectures. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 540–555. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_32

    Chapter  Google Scholar 

  17. Antonio, C.: Sequential model based optimization of partially defined functions under unknown constraints. J. Global Optim. 1–23 (2019). https://doi.org/10.1007/s10898-019-00860-4

  18. Saunders, C., Stitson, M.O., Weston, J., Bottou, L., Smola, A.: Support vector machine-reference manual (1998)

    Google Scholar 

  19. Candelieri, A., Galuzzi, B., Giordani, I., Perego, R., Archetti, F.: Optimizing partially defined black-box functions under unknown constraints via sequential model based optimization: an application to pump scheduling optimization in water distribution networks. In: Matsatsinis, N.F., Marinakis, Y., Pardalos, P. (eds.) LION 2019. LNCS, vol. 11968, pp. 77–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38629-0_7

    Chapter  Google Scholar 

  20. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  21. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  22. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995 (2009)

  23. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theor. 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  24. Casale, P., Pujol, O., Radeva, P.: Personalization and user verification in wearable systems using biometric walking patterns. Pers. Ubiquit. Comput. 16(5), 563–580 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the DEMS Data Science Lab of the Department of Economics Management and Statistics (DEMS) for supporting this work by providing computational resources.

We want to thank STMicroelectronics company that provided us MCUs for the experiments and the valid support from its community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Candelieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perego, R., Candelieri, A., Archetti, F., Pau, D. (2020). Tuning Deep Neural Network’s Hyperparameters Constrained to Deployability on Tiny Systems. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics