Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Joint Entity Summary and Attribute Embeddings for Entity Alignment Between Knowledge Graphs

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

Abstract

Knowledge Graph (KG) is a popular way of storing facts about the real world entities, where nodes represent the entities and edges denote relations. KG is being used in many AI applications, so several large scale Knowledge Graphs (KGs) e.g., DBpedia, Wikidata, YAGO have become extremely popular. Unfortunately, very limited number of the entities stored in different KGs are aligned. This paper presents an embedding-based entity alignment method. Existing methods mainly focus on the relational structures and attributes to align the same entities of two different KGs. Such methods fail when the entities have less number of attributes or when the relational structure may not capture the meaningful representation of the entities. To solve this problem, we propose a Joint Summary and Attribute Embeddings (JSAE) based entity alignment method. We exploit the entity summary information available in KGs for entities’ summary embedding. To learn the semantics of the entity summary we employ Bidirectional Encoder Representations from Transformers (BERT). Our model learns the representations of entities by using relational triples, attribute triples and description as well. We perform experiments on real-world datasets and the results indicate that the proposed approach significantly outperforms the state-of-the-art models for entity alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  2. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: IJCAI, pp. 3998–4004 (2018)

    Google Scholar 

  3. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: IJCAI, pp. 1511–1517 (2017)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  6. Ebisu, T., Ichise, R.: Toruse: knowledge graph embedding on a lie group. In: AAAI, pp. 1819–1826 (2018)

    Google Scholar 

  7. Hao, Y., Zhang, Y., He, S., Liu, K., Zhao, J.: A joint embedding method for entity alignment of knowledge bases. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T., Ruan, T. (eds.) CCKS 2016. CCIS, vol. 650, pp. 3–14. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-3168-7_1

    Chapter  Google Scholar 

  8. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  9. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI,. pp. 2181–2187 (2015)

    Google Scholar 

  10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshop Track (2013)

    Google Scholar 

  11. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  12. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

    Google Scholar 

  13. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW, pp. 697–706 (2007)

    Google Scholar 

  14. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37

    Chapter  Google Scholar 

  15. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, pp. 4396–4402 (2018)

    Google Scholar 

  16. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, pp. 297–304 (2019)

    Google Scholar 

  17. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  18. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  19. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  20. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  21. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR 2015 (2015)

    Google Scholar 

  22. Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: IJCAI, pp. 5429–5435 (2019)

    Google Scholar 

  23. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: IJCAI, pp. 4258–4264 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumana Ferdous Munne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munne, R.F., Ichise, R. (2020). Joint Entity Summary and Attribute Embeddings for Entity Alignment Between Knowledge Graphs. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics