Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Why-Not Questions & Explanations for Collaborative Filtering

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

  • 1277 Accesses

Abstract

Throughout our digital lives, we are getting recommendations for about almost everything we do, buy or consume. However, it is often the case that recommenders cannot locate the best data items to suggest. To deal with this shortcoming, they provide explanations for the reasons specific items are suggested. In this work, we focus on explanations for items that do not appear in the recommendations they way we expect them to, expressed in why-not questions, to aid the system engineer improve the recommender. That is, instead of offering explanations on every item proposed by the system, we allow the developer give feedback about items that were not proposed. We consider here the most traditional category of recommenders, i.e., the collaborative filtering one, and propose ways for providing explanations for why-not questions. We provide a detailed taxonomy of why-not questions on recommenders, and model-specific explanations based on the inherent parameters of the recommender. Finally, we propose an algorithm for producing explanations for the proposed why-not questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An alternative here could be to employ a solution for explaining recommendations.

  2. 2.

    https://grouplens.org/datasets/movielens.

References

  1. Bidoit, N., Herschel, M., Tzompanaki, K.: Immutably answering why-not questions for equivalent conjunctive queries. In: TaPP (2014)

    Google Scholar 

  2. Borges, R., Stefanidis, K.: On measuring popularity bias in collaborative filtering data. In: EDBT/ICDT Workshops (2020)

    Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI (1998)

    Google Scholar 

  4. Chang, S., Harper, F.M., Terveen, L.G.: Crowd-based personalized natural language explanations for recommendations. In: RecSys (2016)

    Google Scholar 

  5. Chen, L., Gao, Y., Wang, K., Jensen, C.S., Chen, G.: Answering why-not questions on metric probabilistic range queries. In: ICDE (2016)

    Google Scholar 

  6. Chen, X., Qin, Z., Zhang, Y., Xu, T.: Learning to rank features for recommendation over multiple categories. In: ACM SIGIR (2016)

    Google Scholar 

  7. Gao, Y., Liu, Q., Chen, G., Zheng, B., Zhou, L.: Answering why-not questions on reverse top-k queries. Proc. VLDB Endow. 8(7), 738–749 (2015)

    Article  Google Scholar 

  8. Ghazimatin, A., Balalau, O.D., Roy, R.S., Weikum, G.: PRINCE: provider-side interpretability with counterfactual explanations in recommender systems. In: WSDM (2020)

    Google Scholar 

  9. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: CSCW (2000)

    Google Scholar 

  10. Islam, M.S., Zhou, R., Liu, C.: On answering why-not questions in reverse skyline queries. In: ICDE (2013)

    Google Scholar 

  11. Konstan, J.A., Miller, B.N., Maltz, D.A., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens: applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  12. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: CHI (2009)

    Google Scholar 

  13. Ntoutsi, E., Stefanidis, K., Rausch, K., Kriegel, H.: Strength lies in differences: Diversifying friends for recommendations through subspace clustering. In: CIKM (2014)

    Google Scholar 

  14. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW (1994)

    Google Scholar 

  15. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW (2001)

    Google Scholar 

  16. Stefanidis, K., Ntoutsi, E., Petropoulos, M., Nørvåg, K., Kriegel, H.: A framework for modeling, computing and presenting time-aware recommendations. Trans. Large-Scale Data- Knowl.-Centered Syst. 10, 146–172 (2013)

    Google Scholar 

  17. Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group recommendations. In: SAC (2020)

    Google Scholar 

  18. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence (2009)

    Google Scholar 

  19. Tintarev, N.: Explanations of recommendations. In: RecSys (2007)

    Google Scholar 

  20. Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: ICDE (2007)

    Google Scholar 

  21. Wang, N., Wang, H., Jia, Y., Yin, Y.: Explainable recommendation via multi-task learning in opinionated text data. In: ACM SIGIR (2018)

    Google Scholar 

  22. Yu, C., Lakshmanan, L.V.S., Amer-Yahia, S.: Recommendation diversification using explanations. In: ICDE (2009)

    Google Scholar 

  23. Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retrieval 14(1), 1–101 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Stefanidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stratigi, M., Tzompanaki, K., Stefanidis, K. (2020). Why-Not Questions & Explanations for Collaborative Filtering. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics