Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Deep Sequence-to-Sequence Method for Aircraft Landing Speed Prediction Based on QAR Data

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

Abstract

Runway overrun is one of the most typical landing incidents highly concerned by airlines in the aviation industry. Previous studies have shown that high landing speed is closely related to runway overrun risks, therefore the study of landing speed prediction based on flight data has drawn attention of many scholars in recent years. However, existing methods are mainly based on traditional machine learning models and handcrafted features, which not only rely heavily on flight experts’ priori knowledge, but also provide unsatisfactory prediction accuracy. To solve this problem, in this paper we propose an innovative deep encoder-decoder model for aircraft landing speed prediction based on Quick Access Recorder (QAR) data. Specifically, we first preprocess the QAR dataset through a data cleaning, Lagrange interpolation and normalization procedure. Second, based on the preprocessed QAR dataset, we use gradient boosting decision trees to select features which are most closely related to landing speed. Finally, we employ the LSTM encoder-decoder architecture where the encoder captures the pattern underlying in the past sequences while the decoder generates predictions for the future speed sequences. We evaluate our method on a dataset of 44,176 A321 flight samples. The experimental results show that the prediction accuracy of the proposed method is significantly higher than the conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Owing to proprietary and privacy considerations, we do not disclose the airline name and data.

References

  1. Boeing Commercial Airplanes: Statistical summary of commercial jet airplane accidents. In: Worldwide Operations, vol. 2008 (1959)

    Google Scholar 

  2. Lv, H., Yu, J., Zhu, T.: A novel method of overrun risk measurement and assessment using large scale QAR data. In: 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), pp. 213–220. IEEE (2018)

    Google Scholar 

  3. Van Es, G.W.H., Tritschler, K., Tauss, M.: Development of a landing overrun risk index, 21st annual European Aviation Safety Seminar (EASS) Nicosia, Cyprus, NLR Air Transport Safety Institute, Report NLR-TP-280 (2009)

    Google Scholar 

  4. Ayra, E.S., Ríos Insua, D., Cano, J.: Bayesian network for managing runway overruns in aviation safety. J. Aerosp. Inf. Syst. 16(12), 546–558 (2019)

    Google Scholar 

  5. Valdés, R.M.A., Comendador, V.F.G., Sanz, L.P., Sanz, A.R.: Prediction of aircraft safety incidents using Bayesian inference and hierarchical structures. Saf. Sci. 104, 216–230 (2018)

    Article  Google Scholar 

  6. Sheridan, K., Puranik, T.G., Mangortey, E., Pinon-Fischer, O.J., Kirby, M., Mavris, D.N.: An application of DBSCAN clustering for flight anomaly detection during the approach phase. In: AIAA Scitech 2020 Forum, p. 1851 (2020)

    Google Scholar 

  7. Basora, L., Olive, X., Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11), 117 (2019)

    Article  Google Scholar 

  8. Calle-Alonso, F., Pérez, C.J., Ayra, E.S.: A Bayesian-network-based approach to risk analysis in runway excursions. J. Navig. 72(5), 1121–1139 (2019)

    Article  Google Scholar 

  9. Wang, L., Ren, Y., Sun, H., Dong, C.: A landing operation performance evaluation system based on flight data. In: Harris, D. (ed.) EPCE 2017. LNCS (LNAI), vol. 10276, pp. 297–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58475-1_22

    Chapter  Google Scholar 

  10. Wang, L., Wu, C., Sun, R.: An analysis of flight quick access recorder (QAR) data and its applications in preventing landing incidents. Reliab. Eng. Syst. Saf. 127, 86–96 (2014)

    Article  Google Scholar 

  11. Hu, C., Zhou, S.-H., Xie, Y., Chang, W.-B.: The study on hard landing prediction model with optimized parameter SVM method. In: 2016 35th Chinese Control Conference (CCC), pp. 4283–4287. IEEE (2016)

    Google Scholar 

  12. Tong, C., Yin, X., Wang, S., Zheng, Z.: A novel deep learning method for aircraft landing speed prediction based on cloud-based sensor data. Future Gener. Comput. Syst. 88, 552–558 (2018)

    Article  Google Scholar 

  13. Tong, C., et al.: An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data. Appl. Soft Comput. 73, 344–349 (2018)

    Article  Google Scholar 

  14. Wang, L., Ren, Y., Wu, C.: Effects of flare operation on landing safety: a study based on ANOVA of real flight data. Saf. Sci. 102, 14–25 (2018)

    Article  Google Scholar 

  15. Khatwa, R., Helmreich, R.L.: Analysis of critical factors during approach and landing in accidents and normal flight. Flight Saf. Digest 17(11–12), 1–2 (1999)

    Google Scholar 

  16. Nielsen, T.D., Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2007). https://doi.org/10.1007/978-0-387-68282-2

    Book  MATH  Google Scholar 

  17. Li, X., Shang, J., Zheng, L., Liu, D., Qi, L., Liu, L.: CurveCluster: automated recognition of hard landing patterns based on QAR curve clustering. In: IEEE 16th International Conference on Ubiquitous Intelligence and Computing (UIC), pp. 602–609. IEEE (2018)

    Google Scholar 

  18. Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1672–1678. IEEE (2018)

    Google Scholar 

  19. Janakiraman, V.M.: Explaining aviation safety incidents using deep temporal multiple instance learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 406–415 (2018)

    Google Scholar 

  20. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  21. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1–9 (2014)

    Google Scholar 

  22. Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning, vol. 1, no. 10. SSS, Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

  23. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  24. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

Download references

Acknowledgements

We thank Dongcheng Chen, Xuan Ding, Lilin Yu, Hao Xie, Lin Qi, Liu Liu, Zhe Huang and Ziwen Liao for their professional opinions and discussions. This work was supported in part by: National Natural Science Foundation of China (Nos. 61702059, 61966008), Fundamental Research Funds for the Central Universities (Nos. 2019CDXYJSJ0021, 2020CDCGJSJ041), Frontier and Application Foundation Research Program of Chongqing City (No. cstc2018jcyjAX0340), Key Research and Development Program of Chongqing (No. cstc2019jscx-fxydX0071), Guangxi Key Laboratory of Optoelectronic Information Processing (No. GD18202), Guangxi Key Laboratory of Trusted Software (Nos. kx201701, kx201702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxing Shang or Yong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, Z. et al. (2020). A Deep Sequence-to-Sequence Method for Aircraft Landing Speed Prediction Based on QAR Data. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics