Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Attack Simulation Language for the IT Domain

  • Conference paper
  • First Online:
Graphical Models for Security (GraMSec 2020)

Abstract

Cyber-attacks on IT infrastructures can have disastrous consequences for individuals, regions, as well as whole nations. In order to respond to these threats, the cyber security assessment of IT infrastructures can foster a higher degree of security and resilience against cyber-attacks. Therefore, the use of attack simulations based on system architecture models is proposed. To reduce the effort of creating new attack graphs for each system under assessment, domain-specific languages (DSLs) can be employed. DSLs codify the common attack logics of the considered domain.

Previously, MAL (the Meta Attack Language) was proposed, which serves as a framework to develop DSLs and generate attack graphs for modeled infrastructures. In this article, we propose coreLang as a MAL-based DSL for modeling IT infrastructures and analyzing weaknesses related to known attacks. To model domain-specific attributes, we studied existing cyber-attacks to develop a comprehensive language, which was iteratively verified through a series of brainstorming sessions with domain modelers. Finally, this first version of the language was validated against known cyber-attack scenarios.

This work has received funding from the Swedish Civil Contingencies Agency through the research centre Resilient Information and Control Systems (RICS), European Union’s H2020 research and innovation programme under the Grant Agreements no. 833481 and no. 832907, the Swedish Energy Agency, and the Swedish Governmental Agency for Innovation Systems (Vinnova).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mal-lang/coreLang/tree/stable.

  2. 2.

    https://mal-lang.org/coreLang/.

References

  1. CVSS v3.1 Specification Document. https://www.first.org/cvss/v3.1/specification-document

  2. Almorsy, M., Grundy, J.: Secdsvl: a domain-specific visual language to support enterprise security modelling. In: 2014 23rd Australian Software Engineering Conference (ASWEC), pp. 152–161. IEEE (2014)

    Google Scholar 

  3. Defense Use Case: Analysis of the cyber attack on the Ukrainian power grid. Electricity Information Sharing and Analysis Center (E-ISAC) (2016)

    Google Scholar 

  4. Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Nydrén, J., Shahzad, K.: securiCAD by foreseeti: a CAD tool for enterprise cyber security management. In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 152–155. IEEE (2015)

    Google Scholar 

  5. Engström, V., Johnson, P., Lagerström, R.: Automating Cyber Attack Simulations Against Amazon Web Services Environments (To be published) (2020)

    Google Scholar 

  6. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using dynamic bayesian network. In: Proceedings of the 4th ACM workshop on Quality of protection, pp. 23–30. ACM (2008)

    Google Scholar 

  7. Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements using uml use case models. In: 2008 1st International Conference on Software Testing, Verification, and Validation, pp. 367–376. IEEE (2008)

    Google Scholar 

  8. Bichler, M.: Design science in information systems research. WIRTSCHAFTSINFORMATIK 48(2), 133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8

    Article  Google Scholar 

  9. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P\(^2\)CySeMoL: predictive, probabilistic cyber security modeling language. IEEE Trans. Dependable Secure Comput. 12(6), 626–639 (2015). https://doi.org/10.1109/TDSC.2014.2382574

    Article  Google Scholar 

  10. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern network attacks and countermeasures using attack graphs. In: Computer Security Applications Conference, 2009. ACSAC 2009. Annual, pp. 117–126. IEEE (2009)

    Google Scholar 

  11. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling and attack simulations. In: Proceedings of the 13th International Conference on Availability, Reliability and Security, p. 38. ACM (2018)

    Google Scholar 

  12. Katsikeas, S., Johnson, P., Hacks, S., Lagerström, R.: Probabilistic modeling and simulation of vehicular cyber attacks : An application of the meta attack language. In: Proceedings of the 5th International Conference on Information Systems Security and Privacy (2019)

    Google Scholar 

  13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack-defense trees. In: International Workshop on Formal Aspects in Security and Trust, pp. 80–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-19751-2_6

  14. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38 (2014)

    Article  Google Scholar 

  15. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS Approach. Springer, New York (2010)

    Google Scholar 

  16. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference on Information Security and Cryptology. pp. 186–198. Springer (2005)

    Google Scholar 

  17. Morikawa, I., Yamaoka, Y.: Threat tree templates to ease difficulties in threat modeling. In: 2011 14th International Conference on Network-Based Information Systems, pp. 673–678 (2011). https://doi.org/10.1109/NBiS.2011.113

  18. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in topological vulnerability analysis. In: Conference For Homeland Security, 2009. CATCH 2009. Cybersecurity Applications Technology, pp. 124–129 (2009). https://doi.org/10.1109/CATCH.2009.19

  19. Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., Riehm, U.: Was bei einem Blackout geschieht: Folgen eines langandauernden und großflächigen Stromausfalls, vol. 662. Büro für Technikfolgen-Abschätzung (2011)

    Google Scholar 

  20. Petit, J., Shladover, S.E.: Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transport. Syst. 16(2), 546–556 (2015)

    Google Scholar 

  21. Prokofiev, A.O., Smirnova, Y.S., Silnov, D.S.: The internet of things cybersecurity examination. In: 2017 Siberian Symposium on Data Science and Engineering (SSDSE), pp. 44–48 (2017)

    Google Scholar 

  22. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)

    Google Scholar 

  23. Schneier, S.: Lies: Digital Security in a Networked World. Wiley, New York 21, 318–333 (2000)

    Google Scholar 

  24. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J.: A survey of iot-enabled cyberattacks: assessing attack paths to critical infrastructures and services. IEEE Commun. Surv. Tutorials 20(4), 3453–3495 (2018)

    Article  Google Scholar 

  25. Weiss, J.: A system security engineering process. In: Proceedings of the 14th National Computer Security Conference, vol. 2, pp. 572–581 (1991)

    Google Scholar 

  26. Williams, L., Lippmann, R., Ingols, K.: GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85933-8_5

  27. Witty, R.J., Allan, A., Enck, J., Wagner, R.: Identity and access management defined. Research Study SPA-21-3430, Gartner (2003)

    Google Scholar 

  28. Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber security analysis. In: 2010 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 211–220. IEEE (2010)

    Google Scholar 

  29. Yan, D., Liu, F., Jia, K.: Modeling an information-based advanced persistent threat attack on the internal network. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Katsikeas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsikeas, S. et al. (2020). An Attack Simulation Language for the IT Domain. In: Eades III, H., Gadyatskaya, O. (eds) Graphical Models for Security. GraMSec 2020. Lecture Notes in Computer Science(), vol 12419. Springer, Cham. https://doi.org/10.1007/978-3-030-62230-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62230-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62229-9

  • Online ISBN: 978-3-030-62230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics