Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploratory Data Analysis of Wind and Waves for Floating Wind Turbines in Santa María, California

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

Offshore wind turbines, and particularly floating wind turbines (FOWT) are subjected to strong wind and wave loads that affect the structural stability and energy efficiency of these renewable energy devices. Although wind -and less often waves- forecasting models have been developed, a deep analysis of the relationship between both external disturbances is necessary to consider the combined effect on the fatigue of the offshore WT. This work presents a study of the most relevant features of wind and waves using distribution analysis and ML techniques on wind and waves real data from an offshore buoy. Linear regression and SVM have been applied to the modelling of the data. These models may be very useful for the design of these floating structures and to study the impact of these external loads on the fatigue. The results lead us to consider the necessity of generating short-term models in specific geographical locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mikati, M., Santos, M., Armenta, C.: Modelado y simulación de un sistema conjunto de energía solar y eólica para analizar su dependencia de la red eléctrica. Revista Iberoamericana de Automática e Informática Industrial 9(3), 267–281 (2012)

    Article  Google Scholar 

  2. Ackermann, T.: Wind Power in Power Systems. Wiley, Hoboken (2005)

    Google Scholar 

  3. Mikati, M., Santos, M., Armenta, C.: Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable Energy 57, 587–593 (2013)

    Article  Google Scholar 

  4. Tomás-Rodríguez, M., Santos, M.: Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática Industrial 16(4), 381–390 (2019)

    Article  Google Scholar 

  5. Rubio, P.M., Quijano, J.F., López, P.Z., et al.: Intelligent control for improving the efficiency of a hybrid semi- submersible platform with wind turbine and wave energy converters. Revista Iberoamericana de Automática e Informática Industrial 16(4), 480–491 (2019)

    Article  Google Scholar 

  6. Gomes, I.L.R., Melicio, R., Mendes, V.M.F.: Wind power with energy storage arbitrage in day-ahead market by a stochastic MILP approach. Logic J. IGPL 208, 570–582 (2019)

    MathSciNet  Google Scholar 

  7. Li, Z., Adeli, H.: Control methodologies for vibration control of smart civil and mechanical structures. Exp. Syst. 35(6), e12354 (2018)

    Article  Google Scholar 

  8. Stewart, G.M., Lackner, M.A.: The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads. Eng. Struct. 73, 54–61 (2014)

    Article  Google Scholar 

  9. Trumars, J., Jonsson, J.O., Bergdahl, L.: The effect of wind and wave misalignment on the response of a wind turbine at Bockstigen. In: 25th International Conference on Offshore Mechanics and Arctic Engineering, pp. 635–641. American Society of Mechanical Engineers Digital Collection (2006)

    Google Scholar 

  10. Bachynski, E.E., Kvittem, M.I., Luan, C., Moan, T.: Wind-wave misalignment effects on floating wind turbines: motions and tower load effects. J. Offshore Mech. Arct. Eng. 136(4), 041902 (2014)

    Article  Google Scholar 

  11. Bachynski, E.E., Moan, T.: Second order wave force effects on tension leg platform wind turbines in misaligned wind and waves. In: ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection (2014)

    Google Scholar 

  12. Sun, C., Jahangiri, V.: Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions. Eng. Struct. 178, 472–483 (2019)

    Article  Google Scholar 

  13. Oh, S., Iwashita, T., Suzuki, H.: Numerical modelling and validation of a semisubmersible floating offshore wind turbine under wind and wave misalignment. J. Phys. Conf. Ser. 1104(1), 012010 (2018). IOP Publishing

    Google Scholar 

  14. NOAA: National oceanic and atmospheric administration. https://www.noaa.gov/. Accessed 19 Jun 2020

  15. Stewart, G.M., Robertson, A., Jonkman, J., Lackner, M.A.: The creation of a comprehensive metocean data set for offshore wind turbine simulations. Wind Energy 19(6), 1151–1159 (2016)

    Article  Google Scholar 

  16. Tukey, J.W.: Exploratory data analysis, vol. 2. Reading, Mass (1977)

    MATH  Google Scholar 

  17. Aguilar, R.M., Torres, J.M., Martin, C.A.: Automatic learning for the system identification. A case study in the prediction of power generation in a wind farm. Revista Iberoamericana de Automática e Informática Industrial 16(1), 114–127 (2019)

    Google Scholar 

  18. Guevara, C.B., Santos, M., Lopez, V.: Negative selection and Knuth Morris Pratt algorithm for anomaly detection. IEEE Latin Am. Trans. 14(3), 1473–1479 (2016)

    Article  Google Scholar 

  19. Zhou, J., Shi, J., Li, G.: Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 52(4), 1990–1998 (2011)

    Article  Google Scholar 

  20. Dormido-Canto, S., et al.: TJ-II wave forms analysis with wavelets and support vector machines. Rev. Sci. Instrum. 75(10), 4254–4257 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish Ministry of Science, Innovation and Universities MCI/AEI/FEDER Project RTI2018-094902-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sacie, M., López, R., Santos, M. (2020). Exploratory Data Analysis of Wind and Waves for Floating Wind Turbines in Santa María, California. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics