Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A MDE Approach for Modelling and Distributed Simulation of Health Systems

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2020)

Abstract

Epidemic episodes such as the COVID-19 has shown the need for simulation tools to support decision making, predict the results of control actions, and mitigating the effects of the virus. Simulation methods have been widely used by healthcare researchers and practitioners to improve the planning and management of hospitals and predict the spread of disease. Simulating all involved aspects of an epidemic episode requires the modelling and simulation of large and complex Discrete Event Systems (DESs), supported by modular and hierarchical models easy to use for experts, and that can be translated to efficient code for distributed simulation. This paper presents a model driven engineering (MDE) approach to support the modelling of healthcare systems (HS) in epidemic episodes combining different perspectives, and the translation to efficient code for scalable distributed simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reconfiguring health systems vital to tackling COVID-19 (2020). https://www.euro.who.int/en/countries/spain/news/news/2020/4/reconfiguring-health-systems-vital-to-tackling-covid-19

  2. Arronategui, U., Bañares, J.Á., Colom, J.M.: Towards an architecture proposal for federation of distributed DES simulators. In: Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Naldi, M. (eds.) GECON 2019. LNCS, vol. 11819, pp. 97–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36027-6_9

    Chapter  Google Scholar 

  3. Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed simulation of discrete event systems. In: Coppola, M., Carlini, E., D’Agostino, D., Altmann, J., Bañares, J.Á. (eds.) GECON 2018. LNCS, vol. 11113, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13342-9_7

    Chapter  Google Scholar 

  4. Baumgarten, B.: On internal and external characterisations of PT-net building block behaviour. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 340, pp. 44–61. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-50580-6_23

    Chapter  Google Scholar 

  5. Beraldi, R., Nigro, L.: Distributed simulation of timed Petri nets. A modular approach using actors and Time Warp. IEEE Concurr. 7(4), 52–62 (1999)

    Google Scholar 

  6. Bernardi, S., Colom, J.M., Albareda, J., Mahulea, C.: A model-based approach for the specification and verification of clinical guidelines. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation, ETFA 2014, Barcelona, Spain, 16–19 September 2014, pp. 1–8 (2014)

    Google Scholar 

  7. Boukerche, A., Grande, R.E.D.: Optimized federate migration for large-scale HLA-based simulations. In: Proceedings of 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, pp. 227–235, October 2008

    Google Scholar 

  8. Chiola, G., Ferscha, A.: Distributed simulation of Petri nets. IEEE Concurr. 3, 33–50 (1993)

    Google Scholar 

  9. Djemame, K., Gilles, D.C., Mackenzie, L.M., Bettaz, M.: Performance comparison of high-level algebraic nets distributed simulation protocols. J. Syst. Architect. 44(6–7), 457–472 (1998)

    Article  Google Scholar 

  10. Ezpeleta, J., Colom, J.M., Martínez, J.: A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Robot. Autom. 11(2), 173–184 (1995)

    Article  Google Scholar 

  11. Fujimoto, R.M.: Research challenges in parallel and distributed simulation. ACM Trans. Model. Comput. Simul. 26(4), 22:1–22:29 (2016)

    Google Scholar 

  12. Gracia, V.M., Tolosana-Calasanz, R., Bañares, J.Á., Arronategui, U., Rana, O.F.: Characterising resource management performance in kubernetes. Comput. Electr. Eng. 68, 286–297 (2018)

    Article  Google Scholar 

  13. Gunal, M.M.: A guide for building hospital simulation models. Health Syst. 1(1), 17–25 (2012)

    Article  Google Scholar 

  14. Haller, P.: On the integration of the actor model in mainstream technologies: the scala perspective. In: Agha, G.A., Bordini, R.H., Marron, A., Ricci, A. (eds.) Proceedings of the 2nd edition on Programming Systems, Languages and Applications Based on Actors, Agents, and Decentralized Control Abstractions, AGERE! 2012, 21–22 October 2012, Tucson, Arizona, USA, pp. 1–6. ACM (2012)

    Google Scholar 

  15. Ivorra, B., Fernández, M., Vela-Pérez, M., Ramos, A.: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci. Numer. Simul. 88, 105303 (2020)

    Google Scholar 

  16. Gilmer, J.B., Sullivan, F.J.: Issues in event analysis for recursive simulation. In: Proceedings of the 37th Winter Simulation Conference, Orlando, FL, USA, 4–7 December 2005, pp. 1234–1241. IEEE Computer Society (2005)

    Google Scholar 

  17. Mahulea, C., Garcia-Soriano, J., Colom, J.M.: Modular Petri net modeling of the Spanish health system. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation, ETFA 2012, Krakow, Poland, 17–21 September 2012, pp. 1–8 (2012)

    Google Scholar 

  18. Mahulea, C., Garcia-Soriano, J., Colom, J.M.: Modular petri net modeling of the Spanish health system. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation, ETFA 2012, Krakow, Poland, 17–21 September 2012, pp. 1–8. IEEE (2012)

    Google Scholar 

  19. Mastio, M., Zargayouna, M., Scemama, G., Rana, O.: Distributed agent-based traffic simulations. IEEE Intell. Transp. Syst. Mag. 10(1), 145–156 (2018)

    Article  Google Scholar 

  20. Mastio, M., Zargayouna, M., Scemama, G., Rana, O.: Two distribution methods for multiagent traffic simulations. Simul. Model. Pract. Theory 89, 35–47 (2018)

    Article  Google Scholar 

  21. Paščinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., Gec, S.: QoS-aware orchestration of network intensive software utilities within software defined data centres. J. Grid Comput. 16(1), 85–112 (2018)

    Article  Google Scholar 

  22. Tolosana-Calasanz, R., Bañares, J.Á., Colom, J.M.: Model-driven development of data intensive applications over cloud resources. Futur. Gener. Comput. Syst. 87, 888–909 (2018)

    Article  Google Scholar 

  23. Topçu, O., Durak, U., Oğuztüzün, H., Yilmaz, L.: Distributed Simulation: A Model-Driven Engineering Approach. Springer International Publishing, Simulation Foundations, Methods and Applications (2016)

    Google Scholar 

  24. Topçu, O., Oğuztüzün, H.: Federate implementation: advanced. Guide to Distributed Simulation with HLA. SFMA, pp. 221–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61267-6_9

    Chapter  Google Scholar 

  25. Traoré, M.K., Zacharewicz, G., Duboz, R., Zeigler, B.P.: Modeling and simulation framework for value-based healthcare systems. Simulation 95(6), 481–497 (2019)

    Article  Google Scholar 

  26. Tricas, F., Colom, J.M., Merelo Guervós, J.J.: Computing minimal siphons in Petri net models of resource allocation systems: an evolutionary approach. In: Proceedings of the International Workshop on Petri Nets and Software Engineering, Tunis, Tunisia, 23–24 June 2014, vol. 1160, pp. 307–322 (2014)

    Google Scholar 

  27. Wooldridge, M.J., Jennings, N.R.: Software engineering with agents: pitfalls and pratfalls. IEEE Internet Comput. 3(3), 20–27 (1999)

    Article  Google Scholar 

  28. Zeigler, B.P., Muzy, A., Kofman, E.: Theory of Modeling and Simulation: Discrete Event and Iterative System Computational Foundations, 3rd edn. Academic Press Inc., Cambridge (2018)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was co-financed by the Aragonese Government and the European Regional Development Fund “Construyendo Europa desde Aragón” (COSMOS research group, ref. T35_17D); and by the Spanish program “Programa estatal del Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i”, project PGC2018-099815-B-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Bañares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arronategui, U., Bañares, J.Á., Colom, J.M. (2020). A MDE Approach for Modelling and Distributed Simulation of Health Systems. In: Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Stankovski, V., Tuffin, B. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2020. Lecture Notes in Computer Science(), vol 12441. Springer, Cham. https://doi.org/10.1007/978-3-030-63058-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63058-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63057-7

  • Online ISBN: 978-3-030-63058-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics