Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

VARF: Verifying and Analyzing Robustness of Random Forests

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12531))

Included in the following conference series:

  • 757 Accesses

Abstract

With the large-scale application of machine learning in various fields, the security of models has attracted great attention. Recent studies have shown that tree-based models are vulnerable to adversarial examples. This problem may cause serious security risks. It is important to verify the safety of models. In this paper, we study the robustness verification problem of Random Forests (RF) which is a fundamental machine learning technique. We reduce the verification problem of an RF model into a constraint solving problem solved by modern SMT solvers. Then we present a novel method based on the minimal unsatisfiable core to explain the robustness over a sample. Furthermore, we propose an algorithm for measuring Local Robustness Feature Importance (LRFI). The LRFI builds a link between the features and the robustness. It can identify which features are more important for providing robustness of the model. We have implemented these methods into a tool named VARF. We evaluate VARF on two public datasets, demonstrating its scalability and ability to verify large models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8_11

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Bride, H., Dong, J., Dong, J.S., Hóu, Z.: Towards dependable and explainable machine learning using automated reasoning. In: Formal Methods and Software Engineering - 20th International Conference on Formal Engineering Methods, ICFEM 2018, Gold Coast, QLD, Australia, 12–16 November 2018, Proceedings, pp. 412–416 (2018). https://doi.org/10.1007/978-3-030-02450-5_25

  4. Bride, H., Hou, Z., Dong, J., Dong, J.S., Mirjalili, S.M.: Silas: High performance, explainable and verifiable machine learning. CoRR abs/1910.01382 (2019). http://arxiv.org/abs/1910.01382

  5. Chen, H., Zhang, H., Boning, D., Hsieh, C.J.: Robust decision trees against adversarial examples. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 1122–1131. PMLR, Long Beach, California, USA, 09–15 June 2019. http://proceedings.mlr.press/v97/chen19m.html

  6. Chen, H., Zhang, H., Si, S., Li, Y., Boning, D., Hsieh, C.J.: Robustness verification of tree-based models. In: Advances in Neural Information Processing Systems, pp. 12317–12328 (2019)

    Google Scholar 

  7. Cheng, M., Le, T., Chen, P., Zhang, H., Yi, J., Hsieh, C.: Query-efficient hard-label black-box attack: an optimization-based approach. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=rJlk6iRqKX

  8. Chu, L., Hu, X., Hu, J., Wang, L., Pei, J.: Exact and consistent interpretation for piecewise linear neural networks: a closed form solution. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2018)

    Google Scholar 

  9. Cidon, A., Gavish, L., Bleier, I., Korshun, N., Schweighauser, M., Tsitkin, A.: High precision detection of business email compromise. In: 28th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 19), pp. 1291–1307 (2019)

    Google Scholar 

  10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  11. Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient boosted models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2446–2453 (2019)

    Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6572

  13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  14. Kantchelian, A., Tygar, J.D., Joseph, A.: Evasion and hardening of tree ensemble classifiers. In: International Conference on Machine Learning, pp. 2387–2396 (2016)

    Google Scholar 

  15. Kharraz, A., Robertson, W., Kirda, E.: Surveylance: automatically detecting online survey scams. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 70–86. IEEE (2018). https://doi.org/10.1109/SP.2018.00044

  16. Kim, B., Koyejo, O., Khanna, R.: Examples are not enough, learn to criticize! criticism for interpretability. In: NIPS (2016)

    Google Scholar 

  17. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS (2017)

    Google Scholar 

  18. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Nelms, T., Perdisci, R., Antonakakis, M., Ahamad, M.: Towards measuring and mitigating social engineering software download attacks. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16), pp. 773–789 (2016)

    Google Scholar 

  20. OpenML: openml.org. https://www.openml.org. Accessed 2020

  21. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  22. Rafique, M.Z., Van Goethem, T., Joosen, W., Huygens, C., Nikiforakis, N.: It’s free for a reason: exploring the ecosystem of free live streaming services. In: Proceedings of the 23rd Network and Distributed System Security Symposium (NDSS 2016), pp. 1–15. Internet Society (2016)

    Google Scholar 

  23. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI (2018)

    Google Scholar 

  24. Sato, N., Kuruma, H., Nakagawa, Y., Ogawa, H.: Formal verification of decision-tree ensemble model and detection of its violating-input-value ranges. CoRR abs/1904.11753 (2019). http://arxiv.org/abs/1904.11753

  25. Seshia, S.A., Sadigh, D.: Towards verified artificial intelligence. CoRR abs/1606.08514 (2016). http://arxiv.org/abs/1606.08514

  26. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6199

  27. Törnblom, J., Nadjm-Tehrani, S.: An abstraction-refinement approach to formal verification of tree ensembles. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 301–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_24

    Chapter  Google Scholar 

  28. Wachter, S., Mittelstadt, B.D., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Eur. Econ.: Microeconomics Ind. Organ. eJournal (2017)

    Google Scholar 

  29. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is partially supported by STCSM Projects (No. 18QB1402000 and No. 18ZR1411600), SHEITC Project (2018-GYHLW-02012) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, C., Shi, J., Huang, Y. (2020). VARF: Verifying and Analyzing Robustness of Random Forests. In: Lin, SW., Hou, Z., Mahony, B. (eds) Formal Methods and Software Engineering. ICFEM 2020. Lecture Notes in Computer Science(), vol 12531. Springer, Cham. https://doi.org/10.1007/978-3-030-63406-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63406-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63405-6

  • Online ISBN: 978-3-030-63406-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics