Abstract
Investigating the functional modular organisation of the brain provides a deeper insight into the complex network phenomena that govern cognitive processes like olfactory perception. In recent years, understanding the neural mechanisms associated with this unique sensory modality has been gaining traction, due to increasing applications in various clinical and non-clinical research areas. Anatomically distinct, but functionally interconnected brain regions, organized as communities (or functional modules) enable high-order cognitive processes by providing support for the integration of several localized, highly specialized processing functions. In this work, to understand the elicited neuronal communication pathways in response to fragrance stimuli of varying positive valence, graph theoretical network metrics were calculated to quantify differences in brain’s functional networks modular organization estimated from source localised EEG signals. We found that inter-modular connectivity differences in neural responses to olfactory stimuli of different pleasantness levels may be linked to inhibitory processes in the frontal and central-occipital regions. Moreover, our results indicate that significant intra-modular connectivity changes may be linked to emotional processing of fragrance stimuli of varying pleasantness.
N. I. Abbasi and S. Saint-Auret—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garcia, J.O., Ashourvan, A., Muldoon, S., Vettel, J.M., Bassett, D.S.: Proc. IEEE 106(5), 846 (2018)
Abbasi, N.I., Harvy, J., Bezerianos, A., Thakor, N.V., Dragomir, A.: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 635–638. IEEE (2019)
Ding, K., et al.: J. Neural Eng. (2020)
Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M.A., Friston, K.: Sci. Rep. 7(1), 1 (2017)
Gurtubay-Antolin, A., León-Cabrera, P., Rodríguez-Fornells, A.: Eneuro 5, 6 (2018)
Hutton, J.S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., Holland, S.K.: Brain Connect. 9(7), 580 (2019)
Shepherd, G.M.: Neuron 46(2), 166 (2005)
Courtiol, E., Wilson, D.A.: Perception 46(3–4), 320 (2017)
Howard, J.D., Plailly, J., Grueschow, M., Haynes, J.D., Gottfried, J.A.: Nat. Neurosci. 12(7), 932 (2009)
Sullivan, R.M., Wilson, D.A., Ravel, N., Mouly, A.M.: Front. Behav. Neurosci. 9, 36 (2015)
Grabenhorst, F., Rolls, E.T., Margot, C., da Silva, M.A., Velazco, M.I.: J. Neurosci. 27(49), 13532 (2007)
Rolls, E.T., Kringelbach, M.L., De Araujo, I.E.: Eur. J. Neurosci. 18(3), 695 (2003)
Yazdani, A., Kroupi, E., Vesin, J.M., Ebrahimi, T.: 2012 Fourth International Workshop on Quality of Multimedia Experience, pp. 272–277. IEEE (2012)
Anokhin, A.P., Van Baal, G., Van Beijsterveldt, C., De Geus, E., Grant, J., Boomsma, D.: Behav. Genet. 31(6), 545 (2001)
Kumar, N., Kumar, J.: Procedia Comput. Sci. 84, 70 (2016)
Taya, F., et al.: Hum. Brain Mapp. 39(9), 3528 (2018)
Abbasi, N.I., et al.: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 631–634. IEEE (2019)
Abbasi, N.I., Bose, R., Bezerianos, A., Thakor, N.V., Dragomir, A.: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5160–5163. IEEE (2019)
Aydemir, O.: Neural Comput. 29(6), 1667 (2017)
Flores-Gutiérrez, E.O., et al.: Int. J. Psychophysiol. 71(1), 43 (2009)
Delorme, A., Makeig, S.: J. Neurosci. Methods 134(1), 9 (2004)
Gómez-Herrero, G., et al.: Proceedings of the 7th Nordic Signal Processing Symposium – NORSIG 2006, pp. 130–133. IEEE (2006)
Pascual-Marqui, R.D., et al.: Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5 (2002)
Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., Pennartz, C.M.: Neuroimage 55(4), 1548 (2011)
Dimitriadis, S.I., Salis, C., Tarnanas, I., Linden, D.E.: Front. Neuroinform. 11, 28 (2017)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)
Xia, M., Wang, J., He, Y.: PLoS ONE 8(7), e68910 (2013)
Uusberg, A., Uibo, H., Kreegipuu, K., Allik, J.: Int. J. Psychophysiol. 89(1), 26 (2013)
Dai, Z., et al.: Front. Hum. Neurosci. 11, 237 (2017)
Bor, D., Seth, A.K.: Front. Psychol. 3, 63 (2012)
Soudry, Y., Lemogne, C., Malinvaud, D., Consoli, S.M., Bonfils, P.: Eur. Ann. Otorhinolaryngol. Head Neck Dis. 128(1), 18 (2011)
Kiehl, K.A., Smith, A.M., Mendrek, A., Forster, B.B., Hare, R.D., Liddle, P.F.: Psychiatry Res. Neuroimaging 130(1), 27 (2004)
Perry, R.J., et al.: Neurocase 7(2), 145 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix: Anatomical Segregation of ROIs in Communities
A Appendix: Anatomical Segregation of ROIs in Communities
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Abbasi, N.I. et al. (2020). Decoding Olfactory Cognition: EEG Functional Modularity Analysis Reveals Differences in Perception of Positively-Valenced Stimuli. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-63836-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63835-1
Online ISBN: 978-3-030-63836-8
eBook Packages: Computer ScienceComputer Science (R0)