Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust and Sparse Support Vector Machines via Mixed Integer Programming

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12566))

Abstract

In machine learning problems in general, and in classification in particular, overfitting and inaccuracies can be obtained because of the presence of spurious features and outliers. Unfortunately, this is a frequent situation when dealing with real data. To handle outliers proneness and achieve variable selection, we propose a robust method performing the outright rejection of discordant observations together with the selection of relevant variables. A natural way to define the corresponding optimization problem is to use the \(\ell _0\) norm and recast it as a mixed integer optimization problem (MIO) having a unique global solution, benefiting from algorithmic advances in integer optimization combined with hardware improvements. We also present an empirical comparison between the \(\ell _0\) norm approach, the 0–1 loss and the hinge loss classification problems. Results on both synthetic and real data sets showed that, the proposed approach provides high quality solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  2. Lee, Y.: Support vector machines for classification: a statistical portrait. In: Bang, H., Zhou, X., van Epps, H., Mazumdar, M. (eds.) Statistical Methods in Molecular Biology. Methods in Molecular Biology (Methods and Protocols), vol. 620, pp. 347–368. Humana Press, Totowa (2010). https://doi.org/10.1007/978-1-60761-580-4_11

  3. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  4. Bertsimas, D., King, A., Mazumder, R., et al.: Best subset selection via a modern optimization lens. Ann. Stat. 44(2), 813–852 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tang, Y., Li, X., Xu, Y., Liu, S., Ouyang, S.: A mixed integer programming approach to maximum margin 0–1 loss classification. In: 2014 International Radar Conference, pp. 1–6. IEEE (2014)

    Google Scholar 

  6. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Chapman (2007)

    Book  MATH  Google Scholar 

  7. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: Advances in Neural Information Processing Systems, pp. 668–674 (2001)

    Google Scholar 

  8. Frohlich, H., Chapelle, O., Scholkopf, B.: Feature selection for support vector machines by means of genetic algorithm. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 142–148. IEEE (2003)

    Google Scholar 

  9. Minh Hoai Nguyen and Fernando De la Torre: Optimal feature selection for support vector machines. Pattern Recogn. 43(3), 584–591 (2010)

    Article  MATH  Google Scholar 

  10. Liu, Z., Elashoff, D., Piantadosi, S.: Sparse support vector machines with L0 approximation for ultra-high dimensional omics data. Artif. Intell. Med. 96, 134–141 (2019)

    Article  Google Scholar 

  11. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

    Article  Google Scholar 

  12. Song, Q., Wenjie, H., Xie, W.: Robust support vector machine with bullet hole image classification. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 440–448 (2002)

    Article  Google Scholar 

  13. Yichao, W., Liu, Y.: Adaptively weighted large margin classifiers. J. Comput. Graph. Stat. 22(2), 416–432 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines. IEEE Trans. Neural Networks 13(2), 464–471 (2002)

    Article  Google Scholar 

  15. Batuwita, R., Palade, V.: FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18(3), 558–571 (2010)

    Article  Google Scholar 

  16. Ding, H., Xu, J.: Random gradient descent tree: a combinatorial approach for SVM with outliers. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  17. Guibiao, X., Cao, Z., Bao-Gang, H., Principe, J.C.: Robust support vector machines based on the rescaled hinge loss function. Pattern Recogn. 63, 139–148 (2017)

    Article  MATH  Google Scholar 

  18. Xiao, Y., Wang, H., Wenli, X.: Ramp loss based robust one-class SVM. Pattern Recogn. Lett. 85, 15–20 (2017)

    Article  Google Scholar 

  19. Yang, L., Dong, H.: Robust support vector machine with generalized quantile loss for classification and regression. Appl. Soft Comput. 81, 105483 (2019)

    Article  Google Scholar 

  20. Bertsimas, D., Dunn, J., Pawlowski, C., Zhuo, Y.D.: Robust classification. INFORMS J. Optim. 1(1), 2–34 (2018)

    Article  MathSciNet  Google Scholar 

  21. Chen, L., Zhou, S.: Sparse algorithm for robust LSSVM in primal space. Neurocomputing 275, 2880–2891 (2018)

    Article  Google Scholar 

  22. Wang, K., Zhong, P.: Robust non-convex least squares loss function for regression with outliers. Knowl. Based Syst. 71, 290–302 (2014)

    Article  Google Scholar 

  23. Yang, X., Tan, L., He, L.: A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140, 41–52 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Jammal , Stephane Canu or Maher Abdallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jammal, M., Canu, S., Abdallah, M. (2020). Robust and Sparse Support Vector Machines via Mixed Integer Programming. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics