Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fast Genetic Algorithm for the Max Cut-Clique Problem

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

Abstract

In Marketing, the goal is to understand the psychology of the customer in order to maximize sales. A common approach is to combine web semantic, sniffing, historical information of the customer, and machine learning techniques.

In this paper, we exploit the historical information of sales in order to assist product placement. The rationale is simple: if two items are sold jointly, they should be close. This concept is formalized in a combinatorial optimization problem, called Max Cut-Clique or \( MCC \) for short.

The hardness of the \( MCC \) promotes the development of heuristics. The literature offers a GRASP/VND methodology as well as an Iterated Local Search (ILS) implementation. In this work, a novel Genetic Algorithm is proposed to deal with the \( MCC \). A comparison with respect to previous heuristics reveals that our proposal is competitive with state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All the scripts are available at the following URL: https://drive.google.com/drive/folders/1mCTaJM4SA62rFhIutam1xDU-PZlXKtJF.

References

  1. Aguinis, H., Forcum, L.E., Joo, H.: Using market basket analysis in management research. J. Manag. 39(7), 1799–1824 (2013)

    Google Scholar 

  2. Amuthan, A., Deepa Thilak, K.: Survey on Tabu Search meta-heuristic optimization. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1539–1543, October 2016

    Google Scholar 

  3. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 4, 2 (2003)

    Article  Google Scholar 

  4. Bourel, M., Canale, E.A., Robledo, F., Romero, P., Stábile, L.: A GRASP/VND heuristic for the max cut-clique problem. In: Nicosia, G., Pardalos, P.M., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) Machine Learning, Optimization, and Data Science - 4th International Conference, LOD 2018, Volterra, Italy, 13–16 September 2018, Revised Selected Papers, LNCS, vol. 11331, pp. 357–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-13709-0_30

  5. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinf. 7(1), 488 (2006)

    Article  Google Scholar 

  6. Bruinsma, G., Bernasco, W.: Criminal groups and transnational illegal markets. Crime Law Soc. Change 41(1), 79–94 (2004)

    Article  Google Scholar 

  7. Cascio, W.F., Aguinis, H.: Research in industrial and organizational psychology from 1963 to 2007: changes, choices, and trends. J. Appl. Psychol. 93(5), 1062–1081 (2008)

    Article  Google Scholar 

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  9. Fagundez, G.: The Malva Project. A framework of artificial intelligence EN C++. GitHub Inc. https://themalvaproject.github.io

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  11. Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics, 2nd edn. Springer Publishing Company Incorporated (2010)

    Google Scholar 

  12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  Google Scholar 

  13. Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J. Comput. Optim. 3(1), 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  14. Harary, F.: Graph Theory. Addison Wesley Series in Mathematics. Addison-Wesley (1971)

    Google Scholar 

  15. Henzinger, M., Lawrence, S.: Extracting knowledge from the world wide web. Proc. Nat. Acad. Sci. 101(suppl 1), 5186–5191 (2004)

    Article  Google Scholar 

  16. Holland, J.H.: Adaption in natural and artificial systems (1975)

    Google Scholar 

  17. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Enumerating isolated cliques in synthetic and financial networks. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 405–416. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7_38

    Chapter  MATH  Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  19. Martins, P.: Cliques with maximum/minimum edge neighborhood and neighborhood density. Comput. Oper. Res. 39, 594–608 (2012)

    Article  MathSciNet  Google Scholar 

  20. Martins, P., Ladrón, A., Ramalhinho, H.: Maximum cut-clique problem: ILS heuristics and a data analysis application. Int. Trans. Oper. Res. 22(5), 775–809 (2014)

    Article  MathSciNet  Google Scholar 

  21. Reeves, C.R.: Genetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 57, pp. 109–139. Springer, Boston (2010). https://doi.org/10.1007/0-306-48056-5_3

  22. Resende, M.G.C., Ribeiro, C.C.: Optimization by GRASP - Greedy Randomized Adaptive Search Procedures. Computational Science and Engineering. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4

  23. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by MATHAMSUD 19-MATH-03 Raredep, Rare events analysis in multi-component systems with dependent components, STICAMSUD 19-STIC-01 ACCON, Algorithms for the capacity crunch problem in optical networks and Fondo Clemente Estable Teoría y Construcción de Redes de Máxima Confiabilidad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanna Fortez , Franco Robledo , Pablo Romero or Omar Viera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fortez, G., Robledo, F., Romero, P., Viera, O. (2020). A Fast Genetic Algorithm for the Max Cut-Clique Problem. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics