Abstract
Adversarial attacks on image classification aim to make visually imperceptible changes to induce misclassification. Popular computational definitions of imperceptibility are largely based on mathematical convenience such as pixel p-norms. We perform a behavioral study that allows us to quantitatively demonstrate the mismatch between human perception and popular imperceptibility measures such as pixel p-norms, earth mover’s distance, structural similarity index, and deep net embedding. Our results call for a reassessment of current adversarial attack formulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018)
Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6(1), 3–5 (2011)
Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Fechner, G.T., Boring, E.G., Howes, D.H., Adler, H.E.: Elements of Psychophysics. Translated by Helmut E. Adler. Edited by Davis H. Howes And Edwin G. Boring, With an Introd. by Edwin G. Boring. Holt, Rinehart and Winston (1966)
Gilmer, J., Adams, R.P., Goodfellow, I., Andersen, D., Dahl, G.E.: Motivating the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732 (2018)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572
Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194 (2001)
Jamieson, K.G., Jain, L., Fernandez, C., Glattard, N.J., Nowak, R.: Next: a system for real-world development, evaluation, and application of active learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 2656–2664. Curran Associates Inc., Red Hook (2015)
Kolter, Z., Madry, A.: Adversarial robustness: theory and practice. In: Tutorial at NeurIPS (2018)
Kriegeskorte, N.: Deep neural networks: a new framework for modeling biological vision and brain information processing. Ann. Rev. Vis. Sci. 1, 417–446 (2015)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)
LeCun, Y.: The mnist database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
Papernot, N., McDaniel, P., Sinha, A., Wellman, M.: Towards the science of security and privacy in machine learning. arXiv preprint arXiv:1611.03814 (2016)
Rensink, R.A.: Change detection. Ann. Rev. Psychol. 53(1), 245–277 (2002)
Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)
Salamati, M., Soudjani, S., Majumdar, R.: Perception-in-the-loop adversarial examples. arXiv preprint arXiv:1901.06834 (2019)
Sharif, M., Bauer, L., Reiter, M.K.: On the suitability of lp-norms for creating and preventing adversarial examples. In: The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CVPR Workshop) (2018)
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Sievert, S., Ross, D., Jain, L., Jamieson, K., Nowak, R., Mankoff, R.: Next: a system to easily connect crowdsourcing and adaptive data collection. In: Proceedings of the 16th Python in Science Conference, pp. 113–119 (2017)
Simons, D.J., Ambinder, M.S.: Change blindness: theory and consequences. Curr. Direct. Psychol. Sci. 14(1), 44–48 (2005)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Tramèr, F., Dupré, P., Rusak, G., Pellegrino, G., Boneh, D.: Adversarial: Perceptual ad blocking meets adversarial machine learning. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2005–2021 (2019)
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wolfe, J.M.: Visual search. Curr.Biol. 20(8), R346–R349 (2010)
Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805–2824 (2019)
Zhang, X., Lin, W., Xue, P.: Just-noticeable difference estimation with pixels in images. J. Vis. Commun. Image Representation 19(1), 30–41 (2008)
Acknowledgments
This work is supported in part by NSF grants 1545481, 1623605, 1704117, 1836978 and the MADLab AF Center of Excellence FA9550-18-1-0166.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sen, A., Zhu, X., Marshall, E., Nowak, R. (2020). Popular Imperceptibility Measures in Visual Adversarial Attacks are Far from Human Perception. In: Zhu, Q., Baras, J.S., Poovendran, R., Chen, J. (eds) Decision and Game Theory for Security. GameSec 2020. Lecture Notes in Computer Science(), vol 12513. Springer, Cham. https://doi.org/10.1007/978-3-030-64793-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-64793-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64792-6
Online ISBN: 978-3-030-64793-3
eBook Packages: Computer ScienceComputer Science (R0)