Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive-Secure Identity-Based Inner-Product Functional Encryption and Its Leakage-Resilience

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2020 (INDOCRYPT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12578))

Included in the following conference series:

Abstract

There are lots of applications of inner-product functional encryption (IPFE). In this paper, we consider two important extensions of it. One is to enhance IPFE with access control such that only users with a pre-defined identity are allowed to compute the inner product, referred as identity-based inner-product functional encryption (IBIPFE). We formalize the definition of IBIPFE, and propose the first adaptive-secure IBIPFE scheme from Decisional Bilinear Diffie-Hellman (DBDH) assumption. In an IBIPFE scheme, the ciphertext is related to a vector \(\varvec{x}\) and a new parameter, identity \(\mathrm {ID}\). Each secret key is also related to a vector \(\varvec{y}\) and an identity \(\mathrm {ID}'\). The decryption algorithm will output the inner-product value \(\langle \varvec{x},\varvec{y} \rangle \) only if \(\mathrm {ID}=\mathrm {ID}'\).

The other extension is to make IBIPFE leakage resilient. We consider the bounded-retrieval model (BRM) in which an adversary can learn at most l bits information from each secret key. Here, l is the leakage bound determined by some external parameters, and it can be set arbitrarily large. After giving the security definition of leakage-resilient IBIPFE, we extend our IBIPFE scheme into a leakage-resilient IBIPFE scheme in the BRM by hash proof system (HPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unlike traditional PKE, the simulation-based security is not always achievable for FE [42]. So Indistinguishability-based security (IND-security) is widely used in FE research. Generally speaking, IND-security states that the adversary who has the secret keys for functions \(\{f_i\}_{i \in [\eta ]}\) cannot distinguish which of the challenge messages \(x_0\) or \(x_1\) was encrypted under the condition that for all \(i \in [\eta ]\), \(f_i(x_0)=f_i(x_1)\).

  2. 2.

    Here, let \(\mathcal {ID}\) be the identity space, \(\mathcal {V}\) be the vector space, and \(\mathcal {IP}\) be the inner-product value space.

  3. 3.

    Here we keep function h secret and set function f to be a black box, which means that one can only get the function value of f by making a query to the oracle, instead of computing it directly.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21

    Chapter  Google Scholar 

  3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  4. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  5. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6

    Chapter  MATH  Google Scholar 

  6. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3

    Chapter  MATH  Google Scholar 

  7. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_6

    Chapter  Google Scholar 

  8. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

    Chapter  Google Scholar 

  10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  12. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 501–510. IEEE (2010)

    Google Scholar 

  13. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_26

    Chapter  Google Scholar 

  14. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_10

    Chapter  Google Scholar 

  15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_1

    Chapter  Google Scholar 

  16. Chow, S.S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 152–161. ACM (2010)

    Google Scholar 

  17. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_21

    Chapter  Google Scholar 

  18. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_12

    Chapter  Google Scholar 

  19. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_22

    Chapter  Google Scholar 

  20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 511–520. IEEE (2010)

    Google Scholar 

  21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 621–630. ACM (2009)

    Google Scholar 

  22. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  23. Dufour-Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption with succinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 426–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_21

    Chapter  Google Scholar 

  24. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_11

    Chapter  Google Scholar 

  25. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 227–237. IEEE (2007)

    Google Scholar 

  26. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 293–302. IEEE (2008)

    Google Scholar 

  27. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_21

    Chapter  Google Scholar 

  28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)

    Article  MathSciNet  Google Scholar 

  29. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_27

    Chapter  Google Scholar 

  30. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564. ACM (2013)

    Google Scholar 

  31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11

    Chapter  Google Scholar 

  32. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)

    Google Scholar 

  33. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

    Article  Google Scholar 

  34. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055858

    Chapter  Google Scholar 

  35. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  36. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  37. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_6

    Chapter  Google Scholar 

  38. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16

    Chapter  MATH  Google Scholar 

  39. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J. Comput. 41(4), 772–814 (2012)

    Article  MathSciNet  Google Scholar 

  40. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)

    Article  MathSciNet  Google Scholar 

  41. Nishimaki, R., Yamakawa, T.: Leakage-resilient identity-based encryption in bounded retrieval model with nearly optimal leakage-ratio. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 466–495. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_16

    Chapter  Google Scholar 

  42. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556 (2010)

    Google Scholar 

  43. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_27

    Chapter  Google Scholar 

  44. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  45. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_46

    Chapter  Google Scholar 

  46. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

  47. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  48. Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_33

    Chapter  Google Scholar 

  49. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_9

    Chapter  Google Scholar 

  50. Zhang, J., Chen, J., Gong, J., Ge, A., Ma, C.: Leakage-resilient attribute based encryption in prime-order groups via predicate encodings. Des. Codes Crypt. 86(6), 1339–1366 (2018)

    Article  MathSciNet  Google Scholar 

  51. Zhang, L., Chen, Y., Zhang, J., He, M., Yiu, S.-M.: From quadratic functions to polynomials: generic functional encryption from standard assumptions. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS, vol. 11445, pp. 142–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16458-4_10

    Chapter  Google Scholar 

  52. Zhang, L., Wang, X., Chen, Y., Yiu, S.M.: Leakage-resilient inner-product functional encryption in the bounded-retrieval model

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Ming Yiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Wang, X., Chen, Y., Yiu, SM. (2020). Adaptive-Secure Identity-Based Inner-Product Functional Encryption and Its Leakage-Resilience. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds) Progress in Cryptology – INDOCRYPT 2020. INDOCRYPT 2020. Lecture Notes in Computer Science(), vol 12578. Springer, Cham. https://doi.org/10.1007/978-3-030-65277-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65277-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65276-0

  • Online ISBN: 978-3-030-65277-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics