Abstract
A garbling scheme enables one to garble a circuit C and an input x in a way that C(x) can be evaluated, but nothing else is revealed. Since the first construction by Yao, tremendous practical efficiency improvements for selectively secure garbling schemes –where the adversary is forced to choose both input and circuit to be garbled at the same time– were proposed. However, in the more realistic setting of adaptive security where an adversary can choose the input adaptively based on the garbled circuit little is known about practical efficiency improvements. In this work, we initiate the study of practical garbling schemes that are both more efficient than Yao’s construction and adaptively secure. We provide insights into characteristics of these schemes and highlight the limitations of current techniques for proving adaptive security in this regime. Furthermore, we present an adaptively secure garbling scheme that garbles \(\mathsf {XOR}\) gates with 2 and \(\mathsf {AND}\) gates with 3 ciphertexts per gate, thus providing the first practical garbling scheme for NC1 circuits with adaptive security based on PRFs whose garbled circuit size is smaller than that of Yao’s construction.
Z. Jafargholi—Supported by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 669255 (MPCPRO).
S. Oechsner—Supported by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 669255 (MPCPRO), the Concordium Blockhain Research Center, Aarhus University, Denmark, and the Danish Independent Research Council under Grant-ID DFF-8021-00366B (BETHE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In considering the adaptive security of any selectively secure garbling scheme, we in fact consider a slightly modified variation of that scheme, where the output map is part of the garbled input.
- 2.
Jafargholi et al. [15] circumvent this lower bound by considering indistinguishability-based instead of simulation-based security. Since the size of the garbled circuit increases by a factor of 2 (compared to YaoGC), it is out of scope of this work.
References
Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_32
Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_6
Applebaum, B.: Garbling XOR gates “for free” in the standard model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_10
Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with constant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_10
Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_23
Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_10
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012
Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_3
Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online complexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_18
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_3
Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 567–578. ACM Press, October 2015
Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_6
Jafargholi, Z., Oechsner, S.: Adaptive security of practical garbling schemes. Cryptology ePrint Archive, Report 2019/1210 (2019). https://eprint.iacr.org/2019/1210
Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_2
Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_17
Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_25
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)
Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_2
Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_27
Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 579–590. ACM Press, October 2015
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: EC, pp. 129–139 (1999)
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8
Acknowledgments
The authors would like to thank Koutarou Suzuki and Ryo Kikuchi for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jafargholi, Z., Oechsner, S. (2020). Adaptive Security of Practical Garbling Schemes. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds) Progress in Cryptology – INDOCRYPT 2020. INDOCRYPT 2020. Lecture Notes in Computer Science(), vol 12578. Springer, Cham. https://doi.org/10.1007/978-3-030-65277-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-65277-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65276-0
Online ISBN: 978-3-030-65277-7
eBook Packages: Computer ScienceComputer Science (R0)