Abstract
For a position in the game of Hex, a fill pattern is a sub-position with one or more empty cells that can be filled without changing the position’s minimax value. A cell is prunable if it can be ignored when searching for a winning move. We introduce two new kinds of Hex fill – mutual and near-dead – and some resulting fill patterns; we show four new permanently-inferior fill patterns; and we present three new prune results, based on strong-reversing, reversing, and game-history respectively. Experiments show these results slightly reducing solving time on 8\(\,\times \,\)8 openings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arneson, B., Hayward, R.B., Henderson, P.: Solving hex: beyond humans. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17928-0_1
Beck, A., Bleicher, M.N., Crowe, D.W.: Excursions into Mathematics. Worth, New York (1969)
Gale, D.: Game of hex and the brouwer fixed point theorem. Am. Math. Monthly 86(10), 818–827 (1979)
Gao, C., Müller, M., Hayward, R.: Focused depth-first proof number search using convolutional neural networks for the game of hex. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 3668–3674 (2017)
Hayward, R., van Rijswijck, J.: Hex and combinatorics. Discrete Math. 306(19–20), 2515–2528 (2006)
Hayward, R.B., Toft, B.: Hex, the full story. CRC Press, London (2019)
Henderson, P.: Playing and Solving Hex. PhD thesis, University of Alberta, Edmonton, Alberta, Canada, Fall (2010). https://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
Henderson, P., Arneson, B., Hayward, R.B.: Hex, Braids, the Crossing Rule, and XH-Search. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 88–98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12993-3_9
Henderson, P., Hayward, R.B.: Captured-reversible moves and star-decomposition domination in Hex. Integers 13(CG1), 1–15 (2013)
Henderson, P., Hayward, R.B.: A Handicap Strategy for Hex, pp. 129–136. MSRI and Cambridge University Press (2015)
Huang, S.-C., Arneson, B., Hayward, R.B., Müller, M., Pawlewicz, J.: MoHex 2.0: a pattern-based MCTS hex player. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 60–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09165-5_6
Pawlewicz, J., Hayward, R.B.: Scalable parallel DFPN search. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 138–150. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09165-5_12
Pawlewicz, J., Hayward, R.B., Henderson, P., Arneson, B.: Stronger virtual connections in hex. IEEE Tran. Comput. Intel. AI Games 7(2), 156–166 (2015)
Yamasaki, Y.: Theory of division games. Pub. Res. Inst. Math. Sci. 14, 337–358 (1978)
Acknowledgements
We thank Chao Gao for many helpful comments and suggestions.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fabiano, N., Hayward, R. (2020). New Hex Patterns for Fill and Prune. In: Cazenave, T., van den Herik, J., Saffidine, A., Wu, IC. (eds) Advances in Computer Games. ACG 2019. Lecture Notes in Computer Science(), vol 12516. Springer, Cham. https://doi.org/10.1007/978-3-030-65883-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-65883-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65882-3
Online ISBN: 978-3-030-65883-0
eBook Packages: Computer ScienceComputer Science (R0)