Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Understanding Compositional Structures in Art Historical Images Using Pose and Gaze Priors

Towards Scene Understanding in Digital Art History

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Image compositions as a tool for analysis of artworks is of extreme significance for art historians. These compositions are useful in analyzing the interactions in an image to study artists and their artworks. Max Imdahl in his work called Ikonik, along with other prominent art historians of the 20\(^\mathrm{th}\) century, underlined the aesthetic and semantic importance of the structural composition of an image. Understanding underlying compositional structures within images is challenging and a time consuming task. Generating these structures automatically using computer vision techniques (1) can help art historians towards their sophisticated analysis by saving lot of time; providing an overview and access to huge image repositories and (2) also provide an important step towards an understanding of man made imagery by machines. In this work, we attempt to automate this process using the existing state of the art machine learning techniques, without involving any form of training. Our approach, inspired by Max Imdahl’s pioneering work, focuses on two central themes of image composition: (a) detection of action regions and action lines of the artwork; and (b) pose-based segmentation of foreground and background. Currently, our approach works for artworks comprising of protagonists (persons) in an image. In order to validate our approach qualitatively and quantitatively, we conduct a user study involving experts and non-experts. The outcome of the study highly correlates with our approach and also demonstrates its domain-agnostic capability. We have open-sourced the code: https://github.com/image-compostion-canvas-group/image-compostion-canvas

P. Madhu and T. Marquart—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Similar results were achieved by using various angles: 10, 20, 60, 80.

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, June 2014

    Google Scholar 

  2. Bell, P., Impett, L.: Ikonographie und Interaktion. Computergestützte Analyse von Posen in Bildern der Heilsgeschichte. Das Mittelalter 24(1), 31–53 (2019). https://doi.org/10.1515/mial-2019-0004. http://www.degruyter.com/view/j/mial.2019.24.issue-1/mial-2019-0004/mial-2019-0004.xml

  3. Bienenstock, E., Geman, S., Potter, D.: Compositionality, MDL priors, and object recognition. In: Advances in Neural Information Processing Systems, pp. 838–844 (1997)

    Google Scholar 

  4. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. arXiv:1812.08008 [cs], May 2019

  5. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Predicting human eye fixations via an LSTM-based saliency attentive model. IEEE Trans. Image Process. 27(10), 5142–5154 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dubuisson, M., Jain, A.K.: A modified hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568, October 1994. https://doi.org/10.1109/ICPR.1994.576361

  7. Dundar, A., Shih, K.J., Garg, A., Pottorf, R., Tao, A., Catanzaro, B.: Unsupervised disentanglement of pose, appearance and background from images and videos. arXiv preprint arXiv:2001.09518 (2020)

  8. Fieraru, M., Khoreva, A., Pishchulin, L., Schiele, B.: Learning to refine human pose estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  9. Garcia, N., Renoust, B., Nakashima, Y.: Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 25–33 (2019)

    Google Scholar 

  10. Garcia, N., Vogiatzis, G.: How to read paintings: semantic art understanding with multi-modal retrieval. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  11. Gonthier, N., Gousseau, Y., Ladjal, S., Bonfait, O.: Weakly supervised object detection in artworks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 692–709. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_53

    Chapter  Google Scholar 

  12. Imdahl, M.: Giotto, Arenafresken: Ikonographie-Ikonologie-Ikonik. Wilhelm Fink, Paderborn (1975)

    Google Scholar 

  13. Imdahl, M.: Giotto, Arenafresken: Ikonographie, Ikonologie, Ikonik. W. Fink, München, Paderborn (1980). oCLC: 7627867

    Google Scholar 

  14. Ionescu, V.: What do you see? the phenomenological model of image analysis: Fiedler, Husserl, Imdahl. Image Narrative 15(3), 93–110 (2014)

    Google Scholar 

  15. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. In: Advances in Neural Information Processing Systems, pp. 4016–4027 (2018)

    Google Scholar 

  16. Jenicek, T., Chum, O.: Linking art through human poses. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1338–1345, September 2019. https://doi.org/10.1109/ICDAR.2019.00216

  17. Kellnhofer, P., Recasens, A., Stent, S., Matusik, W., Torralba, A.: Gaze360: physically unconstrained gaze estimation in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6912–6921 (2019)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disentangling of object shape and appearance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10955–10964 (2019)

    Google Scholar 

  22. Madhu, P., Kosti, R., Mührenberg, L., Bell, P., Maier, A., Christlein, V.: Recognizing characters in art history using deep learning. In: Proceedings of the 1st Workshop on Structuring and Understanding of Multimedia HeritAge Contents, SUMAC 2019, New York, NY, USA, pp. 15–22. Association for Computing Machinery (2019). https://doi.org/10.1145/3347317.3357242. https://doi.org/10.1145/3347317.3357242

  23. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. In: Advances in Neural Information Processing Systems, pp. 2277–2287 (2017)

    Google Scholar 

  24. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903–4911 (2017)

    Google Scholar 

  25. Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 199–207. Curran Associates, Inc. (2015)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Stefanini, M., Cornia, M., Baraldi, L., Corsini, M., Cucchiara, R.: Artpedia: a new visual-semantic dataset with visual and contextual sentences in the artistic domain. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 729–740. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_66

    Chapter  Google Scholar 

  28. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  29. Volkenandt, C.: Bildfeld und Feldlinien. Formen des vergleichenden Sehens bei Max Imdahl, Theodor Hetzer und Dagobert Frey, pp. 407–430. Wilhelm Fink, Leiden, The Netherlands (2010). https://www.fink.de/view/book/edcoll/9783846750155/B9783846750155-s021.xml

  30. Yuille, A.L., Liu, C.: Deep nets: what have they ever done for vision? arXiv preprint arXiv:1805.04025 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prathmesh Madhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madhu, P., Marquart, T., Kosti, R., Bell, P., Maier, A., Christlein, V. (2020). Understanding Compositional Structures in Art Historical Images Using Pose and Gaze Priors. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics