Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Skin Lesion Segmentation Techniques Based on Markov Random Field

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11987))

  • 256 Accesses

Abstract

Several segmentation models based on Markov Random Field (MRF) theory have achieved great success in medical images. This paper presents a detailed and robust survey of the techniques based on MRF theory for performing skin lesion segmentation. Five types of models based on MRF theory namely Pixel-Based MRF model, Region-Based MRF model, Edge-Based MRF model, (Pixel, Region)-based MRF model and (Pixel, Region, Edge)-based MRF model, have been examined and utilized for segmentation of skin lesion images. The performance analysis of the five models have been conducted. Evaluation and comparison of these five models were also carried out. This work finds out and proposes possible improvements of these methods on the segmentation of skin lesions. It is also a systematic comparison of these models on the segmentation of skin lesion images. The paper discovers how MRF theory models can be explored using a supervised approach to get accurate results with less complexity possible. The models were evaluated on skin lesion dataset in PH2 dermoscopic images archives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emre Celebi, M., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  2. Chen, X., Zheng, C., Yao, H., Wang, B.: Image segmentation using a unified markov random field model. IET Image Process. 11(10), 860–869 (2017)

    Article  Google Scholar 

  3. Chien, S.-Y., Huang, Y.-W., Chen, L.-G.: Predictive watershed: a fast watershed algorithm for video segmentation. IEEE Trans. Circuits Syst. Video Technol. 13(5), 453–461 (2003)

    Article  Google Scholar 

  4. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  5. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  6. Deng, H., Clausi, D.A.: Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern Recognit. 37(12), 2323–2335 (2004)

    Article  Google Scholar 

  7. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33(1), 116–125 (1986)

    Article  Google Scholar 

  8. Eltayef, K., Li, Y., Liu, X.: Lesion segmentation in dermoscopy images using particle swarm optimization and markov random field. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 739–744. IEEE (2017)

    Google Scholar 

  9. Grosgeorge, D., Petitjean, C., Ruan, S.: Multilabel statistical shape prior for image segmentation. IET Image Process. 10(10), 710–716 (2016)

    Article  Google Scholar 

  10. Jie, F., Shi, Y., Li, Y., Liu, Z.: Interactive region-based MRF image segmentation. In: 2011 4th International Congress on Image and Signal Processing (CISP), vol. 3, pp. 1263–1267. IEEE (2011)

    Google Scholar 

  11. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flowsf. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  12. Li, C., Lin, L., Zuo, W., Wang, W., Tang, J.: An approach to streaming video segmentation with sub-optimal low-rank decomposition. IEEE Trans. Image Process. 25(5), 1947–1960 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, London (2009). https://doi.org/10.1007/978-1-84800-279-1

    Book  MATH  Google Scholar 

  14. Liu, G., Zhao, Z., Zhang, Y.: Image fuzzy clustering based on the region-level Markov random field model. IEEE Geosci. Remote Sens. Lett 12(8), 1770–1774 (2015)

    Article  Google Scholar 

  15. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH\(^2\)-a dermoscopic image database for research and benchmarking. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  16. Nguyen, N.-Q., Lee, S.-W.: Robust boundary segmentation in medical images using a consecutive deep encoder-decoder network. IEEE Access 7, 33795–33808 (2019)

    Article  Google Scholar 

  17. Salih, O., Viriri, S.: Skin cancer segmentation using a unified Markov random field. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 25–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_3

    Chapter  Google Scholar 

  18. Salih, O., Viriri, S.: Skin lesion segmentation using enhanced unified Markov random field. In: Groza, A., Prasath, R. (eds.) MIKE 2018. LNCS (LNAI), vol. 11308, pp. 331–340. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05918-7_30

    Chapter  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Torkashvand, F., Fartash, M.: Automatic segmentation of skin lesion using Markov random field. Can. J. Basic Appl. Sci. 3(3), 93–107 (2015)

    Google Scholar 

  21. Wong, A., Scharcanski, J., Fieguth, P.: Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Trans. Inf. Technol. Biomedicine 15(6), 929–936 (2011)

    Article  Google Scholar 

  22. Zand, M., Doraisamy, S., Halin, A.A., Mustaffa, M.R.: Ontology-based semantic image segmentation using mixture models and multiple CRFs. IEEE Trans. Image Process. 25(7), 3233–3248 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhou, D., Zhou, H.: Minimisation of local within-class variance for image segmentation. IET Image Process. 10(8), 608–615 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omran Salih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salih, O., Viriri, S. (2020). Skin Lesion Segmentation Techniques Based on Markov Random Field. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics