Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Brain Tumor Survival Prediction Using Radiomics Features

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Surgery planning in patients diagnosed with brain tumor is dependent on their survival prognosis. A poor prognosis might demand for a more aggressive treatment and therapy plan, while a favorable prognosis might enable a less risky surgery plan. Thus, accurate survival prognosis is an important step in treatment planning. Recently, deep learning approaches have been used extensively for brain tumor segmentation followed by the use of deep features for prognosis. However, radiomics-based studies have shown more promise using engineered/hand-crafted features. In this paper, we propose a three-step approach for multi-class survival prognosis. In the first stage, we extract image slices corresponding to tumor regions from multiple magnetic resonance image modalities. We then extract radiomic features from these 2D slices. Finally, we train machine learning classifiers to perform the classification. We evaluate our proposed approach on the publicly available BraTS 2019 data and achieve an accuracy of 76.5% and precision of 74.3% using the random forest classifier, which to the best of our knowledge are the highest reported results yet. Further, we identify the most important features that contribute in improving the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American association of neurological surgeons. https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors. Accessed 07 Dec 2020

  2. Anwar, S.M., Altaf, T., Rafique, K., RaviPrakash, H., Mohy-ud-Din, H., Bagci, U.: A survey on recent advancements for AI enabled radiomics in neuro-oncology. In: Mohy-ud-Din, H., Rathore, S. (eds.) RNO-AI 2019. LNCS, vol. 11991, pp. 24–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40124-5_3

    Chapter  Google Scholar 

  3. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. Journal of medical systems 42(11), 226 (2018). https://doi.org/10.1007/s10916-018-1088-1

    Article  Google Scholar 

  4. Anwar, S.M., Yousaf, S., Majid, M.: Brain tumor segmentation on multimodal MRI scans using EMAP algorithm. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 550–553. IEEE (2018)

    Google Scholar 

  5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  6. Burger, W., Burge, M.J.: Fourier shape descriptors. In: Principles of Digital Image Processing. Undergraduate Topics in Computer Science, pp. 169–227. Springer, London (2013). https://doi.org/10.1007/978-1-84882-919-0_6

  7. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  8. Ho, M.L., Rojas, R., Eisenberg, R.L.: Cerebral edema. Am. J. Roentgenol. 199(3), W258–W273 (2012)

    Article  Google Scholar 

  9. Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016). https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  10. Mehreen, A., Anwar, S.M., Haseeb, M., Majid, M., Ullah, M.O.: A hybrid scheme for drowsiness detection using wearable sensors. IEEE Sens. J. 19(13), 5119–5126 (2019)

    Article  Google Scholar 

  11. Polepaka, S., Rao, C.S., Mohan, M.C.: IDSS-based two stage classification of brain tumor using SVM. Health Technol. 10, 249–258 (2019). https://doi.org/10.1007/s12553-018-00290-4

    Article  Google Scholar 

  12. RaviPrakash, H., et al.: Deep learning provides exceptional accuracy to ECoG-based functional language mapping for epilepsy surgery. Front. Neurosci. 14, 409 (2020)

    Article  Google Scholar 

  13. Sun, L., Zhang, S., Chen, H., Luo, L.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019)

    Article  Google Scholar 

  14. Sun, L., Zhang, S., Luo, L.: Tumor segmentation and survival prediction in glioma with deep learning. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 83–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_8

    Chapter  Google Scholar 

  15. Suter, Y., et al.: Deep learning versus classical regression for brain tumor patient survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 429–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_38

    Chapter  Google Scholar 

  16. Villanueva-Meyer, J.E., Mabray, M.C., Cha, S.: Current clinical brain tumor imaging. Neurosurgery 81(3), 397–415 (2017)

    Article  Google Scholar 

  17. Wang, F., Jiang, R., Zheng, L., Meng, C., Biswal, B.: 3D U-Net based brain tumor segmentation and survival days prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 131–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_13

    Chapter  Google Scholar 

  18. Weninger, L., Rippel, O., Koppers, S., Merhof, D.: Segmentation of brain tumors and patient survival prediction: methods for the BraTS 2018 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_1

    Chapter  Google Scholar 

  19. Yang, D., Rao, G., Martinez, J., Veeraraghavan, A., Rao, A.: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42(11), 6725–6735 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Muhammad Anwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousaf, S., Anwar, S.M., RaviPrakash, H., Bagci, U. (2020). Brain Tumor Survival Prediction Using Radiomics Features. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics