Abstract
Surgery planning in patients diagnosed with brain tumor is dependent on their survival prognosis. A poor prognosis might demand for a more aggressive treatment and therapy plan, while a favorable prognosis might enable a less risky surgery plan. Thus, accurate survival prognosis is an important step in treatment planning. Recently, deep learning approaches have been used extensively for brain tumor segmentation followed by the use of deep features for prognosis. However, radiomics-based studies have shown more promise using engineered/hand-crafted features. In this paper, we propose a three-step approach for multi-class survival prognosis. In the first stage, we extract image slices corresponding to tumor regions from multiple magnetic resonance image modalities. We then extract radiomic features from these 2D slices. Finally, we train machine learning classifiers to perform the classification. We evaluate our proposed approach on the publicly available BraTS 2019 data and achieve an accuracy of 76.5% and precision of 74.3% using the random forest classifier, which to the best of our knowledge are the highest reported results yet. Further, we identify the most important features that contribute in improving the prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
American association of neurological surgeons. https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors. Accessed 07 Dec 2020
Anwar, S.M., Altaf, T., Rafique, K., RaviPrakash, H., Mohy-ud-Din, H., Bagci, U.: A survey on recent advancements for AI enabled radiomics in neuro-oncology. In: Mohy-ud-Din, H., Rathore, S. (eds.) RNO-AI 2019. LNCS, vol. 11991, pp. 24–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40124-5_3
Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. Journal of medical systems 42(11), 226 (2018). https://doi.org/10.1007/s10916-018-1088-1
Anwar, S.M., Yousaf, S., Majid, M.: Brain tumor segmentation on multimodal MRI scans using EMAP algorithm. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 550–553. IEEE (2018)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)
Burger, W., Burge, M.J.: Fourier shape descriptors. In: Principles of Digital Image Processing. Undergraduate Topics in Computer Science, pp. 169–227. Springer, London (2013). https://doi.org/10.1007/978-1-84882-919-0_6
Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Ho, M.L., Rojas, R., Eisenberg, R.L.: Cerebral edema. Am. J. Roentgenol. 199(3), W258–W273 (2012)
Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016). https://doi.org/10.1007/s00401-016-1545-1
Mehreen, A., Anwar, S.M., Haseeb, M., Majid, M., Ullah, M.O.: A hybrid scheme for drowsiness detection using wearable sensors. IEEE Sens. J. 19(13), 5119–5126 (2019)
Polepaka, S., Rao, C.S., Mohan, M.C.: IDSS-based two stage classification of brain tumor using SVM. Health Technol. 10, 249–258 (2019). https://doi.org/10.1007/s12553-018-00290-4
RaviPrakash, H., et al.: Deep learning provides exceptional accuracy to ECoG-based functional language mapping for epilepsy surgery. Front. Neurosci. 14, 409 (2020)
Sun, L., Zhang, S., Chen, H., Luo, L.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019)
Sun, L., Zhang, S., Luo, L.: Tumor segmentation and survival prediction in glioma with deep learning. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 83–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_8
Suter, Y., et al.: Deep learning versus classical regression for brain tumor patient survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 429–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_38
Villanueva-Meyer, J.E., Mabray, M.C., Cha, S.: Current clinical brain tumor imaging. Neurosurgery 81(3), 397–415 (2017)
Wang, F., Jiang, R., Zheng, L., Meng, C., Biswal, B.: 3D U-Net based brain tumor segmentation and survival days prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 131–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_13
Weninger, L., Rippel, O., Koppers, S., Merhof, D.: Segmentation of brain tumors and patient survival prediction: methods for the BraTS 2018 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_1
Yang, D., Rao, G., Martinez, J., Veeraraghavan, A., Rao, A.: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42(11), 6725–6735 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yousaf, S., Anwar, S.M., RaviPrakash, H., Bagci, U. (2020). Brain Tumor Survival Prediction Using Radiomics Features. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-66843-3_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66842-6
Online ISBN: 978-3-030-66843-3
eBook Packages: Computer ScienceComputer Science (R0)