Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SA-AE for Any-to-Any Relighting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

In this paper, we present a novel automatic model Self-Attention AutoEncoder (SA-AE) for generating a relit image from a source image to match the illumination setting of a guide image, which is called any-to-any relighting. In order to reduce the difficulty of learning, we adopt an implicit scene representation learned by the encoder to render the relit image using the decoder. Based on the learned scene representation, a lighting estimation network is designed as a classification task to predict the illumination settings from the guide images. Also, a lighting-to-feature network is well designed to recover the corresponding implicit scene representation from the illumination settings, which is the inverse process of the lighting estimation network. In addition, a self-attention mechanism is introduced in the autoencoder to focus on the re-rendering of the relighting-related regions in the source images. Extensive experiments on the VIDIT dataset show that the proposed approach achieved the 1st place in terms of MPS and the 1st place in terms of SSIM in the AIM 2020 Any-to-any Relighting Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barron, J.T., Malik, J.: Color constancy, intrinsic images, and shape estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 57–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_5

    Chapter  Google Scholar 

  2. Barron, J.T., Malik, J.: Shape, albedo, and illumination from a single image of an unknown object. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 334–341. IEEE (2012)

    Google Scholar 

  3. Barron, J.T., Malik, J.: Intrinsic scene properties from a single RGB-D image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 17–24 (2013)

    Google Scholar 

  4. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1670–1687 (2014)

    Article  Google Scholar 

  5. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (TOG) 38(4), 1–11 (2019)

    Article  Google Scholar 

  6. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156 (2000)

    Google Scholar 

  7. El Helou, M., Zhou, R., Johan, B., Süsstrunk, S.: VIDIT: virtual image dataset for illumination transfer. arXiv preprint arXiv:2005.05460 (2020)

  8. El Helou, M., Zhou, R., Süsstrunk, S., Timofte, R., et al.: AIM 2020: scene relighting and illumination estimation challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 499–518. Springer, Cham (2020)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. Kanamori, Y., Endo, Y.: Relighting humans: occlusion-aware inverse rendering for full-body human images. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Knill, D.C., Richards, W.: Perception as Bayesian inference. Chapter The Perception of Shading and Reflectance. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  15. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2475–2484 (2020)

    Google Scholar 

  16. Matusik, W., Loper, M., Pfister, H.: Progressively-refined reflectance functions from natural illumination. In: Rendering Techniques, pp. 299–308 (2004)

    Google Scholar 

  17. Nestmeyer, T., Lalonde, J.F., Matthews, I., Lehrmann, A.: Learning physics-guided face relighting under directional light. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5124–5133 (2020)

    Google Scholar 

  18. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Article  Google Scholar 

  19. Peers, P., et al.: Compressive light transport sensing. ACM Trans. Graph. (TOG) 28(1), 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  20. Reddy, D., Ramamoorthi, R., Curless, B.: Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 596–610. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_43

    Chapter  Google Scholar 

  21. Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: SfSNET: learning shape, reflectance and illuminance of faces ‘in the wild’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6296–6305 (2018)

    Google Scholar 

  22. Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. 38(4), 79:1–79:12 (2019)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)

    Article  Google Scholar 

  25. Yu, Y., Smith, W.A.: InverseRenderNet: learning single image inverse rendering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2019)

    Google Scholar 

  26. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019)

    Google Scholar 

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  28. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imag. 3(1), 47–57 (2016)

    Article  Google Scholar 

  29. Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7194–7202 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC under Grant 61531014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Huang, X., Li, Y., Wang, Q. (2020). SA-AE for Any-to-Any Relighting. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics