Abstract
Existing approaches and datasets for face aging produce results skewed towards the mean, with individual variations and expression wrinkles often invisible or overlooked in favor of global patterns such as the fattening of the face. Moreover, they offer little to no control over the way the faces are aged and can difficultly be scaled to large images, thus preventing their usage in many real-world applications. To address these limitations, we present an approach to change the appearance of a high-resolution image using ethnicity-specific aging information and weak spatial supervision to guide the aging process. We demonstrate the advantage of our proposed method in terms of quality, control, and how it can be used on high-definition images while limiting the computational overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R., Escalera, S., Baro, X., Guyon, I., Rothe, R.: Apparent and real age estimation in still images with deep residual regressors on appa-real database. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 87–94. IEEE (2017)
Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with conditional generative adversarial networks. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2089–2093. IEEE (2017)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)
Bazin, R., Doublet, E.: Skin Aging Atlas, vol. 1. Caucasian Type. MED’COM publishing (2007)
Bazin, R., Flament, F.: Skin Aging Atlas, vol. 2. Asian Type (2010)
Bazin, R., Flament, F., Giron, F.: Skin Aging Atlas, vol. 3. Afro-American Type. Med’com, Paris (2012)
Bazin, R., Flament, F., Rubert, V.: Skin Aging Atlas, vol. 4. Indian Type (2015)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49
Choi, Y., et al.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. arXiv preprint arXiv:1912.01865 (2019)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Flament, F., Bazin, R., Qiu, H.: Skin Aging Atlas, vol. 5, Photo-aging Face & Body (2017)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Heljakka, A., Solin, A., Kannala, J.: Recursive chaining of reversible image-to-image translators for face aging. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 309–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_26
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Kärkkäinen, K., Joo, J.: Fairface: face attribute dataset for balanced race, gender, and age. arXiv preprint arXiv:1908.04913 (2019)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems, pp. 9605–9616 (2018)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: GANimation: anatomically-aware facial animation from a single image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 835–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_50
Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR 2006), pp. 341–345. IEEE (2006)
Rothe, R., Timofte, R., Van Gool, L.: Dex: deep expectation of apparent age from a single image. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 10–15 (2015)
Song, J., Zhang, J., Gao, L., Liu, X., Shen, H.T.: Dual conditional GANs for face aging and rejuvenation. In: IJCAI, pp. 899–905 (2018)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)
Upchurch, P., et al.: Deep feature interpolation for image content changes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7064–7073 (2017)
Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7939–7947 (2018)
Yazici, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The unusual effectiveness of averaging in GAN training. arXiv preprint arXiv:1806.04498 (2018)
Zeng, H., Lai, H., Yin, J.: Controllable face aging. arXiv preprint arXiv:1912.09694 (2019)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhu, H., Huang, Z., Shan, H., Zhang, J.: Look globally, age locally: face aging with an attention mechanism. arXiv preprint arXiv:1910.12771 (2019)
Zhu, H., Zhou, Q., Zhang, J., Wang, J.Z.: Facial aging and rejuvenation by conditional multi-adversarial autoencoder with ordinal regression. arXiv preprint arXiv:1804.02740 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
We would like to thank Axel Sala-Martin for his insight on the model architecture and training process, and Robin Kips for many helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mov 4000 KB)
Supplementary material 3 (mov 3896 KB)
Supplementary material 4 (mov 3888 KB)
Supplementary material 5 (mov 4387 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Despois, J., Flament, F., Perrot, M. (2020). AgingMapGAN (AMGAN): High-Resolution Controllable Face Aging with Spatially-Aware Conditional GANs. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-67070-2_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67069-6
Online ISBN: 978-3-030-67070-2
eBook Packages: Computer ScienceComputer Science (R0)