Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model-Based Virtual Prototyping of CPS: Application to Bio-Medical Devices

  • Conference paper
  • First Online:
Model-Driven Engineering and Software Development (MODELSWARD 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1361))

Abstract

Virtual prototyping and co-simulation of mixed analog/ digital embedded systems have emerged as a promising research topic, in particular for designing medical appliances. In the paper, we show how the integration of different, analog and digital, Models of Computation (MoC) within an UML/SysML based environment, can offer an efficient assistance for designing a cyber-physical system in a progressive and systematic manner. For this, we rely on formal verification and abstract simulation on a high abstraction level, and on Multi-MoC virtual prototyping on a lower abstraction level. A realistic echo monitoring system illustrates (i) the method, (ii) the modeling languages, and (iii) the different verification techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Accellera Systems Initiative: SystemC AMS extensions Users Guide, Version 1.0 (2010)

    Google Scholar 

  2. Andrade, L., Maehne, T., Vachoux, A., Ben Aoun, C., Pêcheux, F., Louërat, M.M.: Pre-simulation formal analysis of synchronization issues between discrete event and timed data flow models of computation. In: Design, Automation and Test in Europe, DATE Conference (2015)

    Google Scholar 

  3. Apvrille, L., Becoulet, A.: Prototyping an embedded automotive system from its UML/SysML models. In: ERTSS 2012, Toulouse (2012)

    Google Scholar 

  4. Apvrille, L.: Webpage of TTool (2003). https://ttool.telecom-paris.fr/

  5. Apvrille, L., Muhammad, W., Ameur-Boulifa, R., Coudert, S., Pacalet, R.: A UML-based environment for system design space exploration. In: 2006 13th IEEE International Conference on Electronics, Circuits and Systems, pp. 1272–1275. IEEE (2006)

    Google Scholar 

  6. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.L.: Metropolis: an integrated electronic system design environment. IEEE Comput. 36(4), 45–52 (2003)

    Article  Google Scholar 

  7. Barnasconi, M., Einwich, K., Grimm, C., Maehne, T., Vachoux, A.: SystemC AMS Extensions 2.0 Language Reference Manual. Accellera systems initiative (2016)

    Google Scholar 

  8. Beyond Dreams Consortium: Beyond Dreams (Design Refinement of Embedded Analogue and Mixed-Signal Systems) (2008–2011). projects.eas.iis.fraunhofer.de/beyonddreams

  9. Blochwitz, T., et al.: The functional mockup interface for tool independent exchange of simulation models. In: 8th International Modelica Conference, Dresden, Germany, pp. 105–114 (2011)

    Google Scholar 

  10. Bouquet, F., Gauthier, J.M., Hammad, A., Peureux, F.: Transformation of SysML structure diagrams to VHDL-AMS. In: 2012 Second Workshop on Design, Control and Software Implementation for Distributed MEMS, pp. 74–81. IEEE (2012)

    Google Scholar 

  11. Bybell, T.: GtkWave electronic waveform viewer (2010). gtkwave.sourceforge.net

  12. Concepcion, A.I., Zeigler, B.P.: DEVS formalism: a framework for hierarchical model development. IEEE Trans. Softw. Eng. 14(2), 228–241 (1988)

    Article  Google Scholar 

  13. Cortés Porto, R.: Integration of SystemC-AMS Simulation Platforms into TTool. Master’s thesis, Technische Universität Kaiserslautern (2018)

    Google Scholar 

  14. Cortés Porto, R., Genius, D., Apvrille, L.: Modeling and virtual prototyping for embedded systems on mixed-signal multicores. In: RAPIDO (2019)

    Google Scholar 

  15. Damm, M., Grimm, C., Haas, J., Herrholz, A., Nebel, W.: Connecting SystemC-AMS models with OSCI TLM 2.0 models using temporal decoupling. In: FDL, pp. 25–30 (2008)

    Google Scholar 

  16. Davare, A., et al.: A next-generation design framework for platform-based design. In: DVCon, vol. 152 (2007)

    Google Scholar 

  17. EchOpen community: designing an open-source and low-cost echo-stethoscope (2017). http://www.echopen.org/

  18. Einwich, K.: SystemC AMS PoC2.1 Library, COSEDA, Dresden (2016)

    Google Scholar 

  19. Fritzson, P., Engelson, V.: Modelica—a unified object-oriented language for system modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054087

    Chapter  Google Scholar 

  20. Gamatié, A., et al.: A model-driven design framework for massively parallel embedded systems. ACM Trans. Embed. Comput. Syst. 10(4), 39 (2011)

    Article  Google Scholar 

  21. Genius, D., Apvrille, L.: Virtual yet precise prototyping: an automotive case study. In: ERTSS 2016, Toulouse (2016)

    Google Scholar 

  22. Genius, D., Li, L.W., Apvrille, L.: Model-driven performance evaluation and formal verification for multi-level embedded system design. In: MODELSWARD (2017)

    Google Scholar 

  23. Genius, D., Li, L.W., Apvrille, L.: Multi-level Latency Evaluation with an MDE Approach. In: MODELSWARD (2018)

    Google Scholar 

  24. Genius, D.: Webpage of TTool AMS extensions (2020). https://www-soc.lip6.fr/trac/ttool-ams

  25. Genius, D., Bournias, I., Apvrille, L., Chotin, R.: High-level partitioning and design space exploration for cyber physical systems. In: MODELSWARD (2020)

    Google Scholar 

  26. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A tool for high-level modeling of analog/mixed signal embedded systems. In: MODELSWARD (2019)

    Google Scholar 

  27. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A framework for multi-level modeling of analog/mixed signal embedded systems. In: Hammoudi, S., Pires, L.F., Selić, B. (eds.) MODELSWARD 2019. CCIS, vol. 1161, pp. 201–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37873-8_9

    Chapter  Google Scholar 

  28. Guo, L., Zhu, Q., Nuzzo, P., Passerone, R., Sangiovanni-Vincentelli, A., Lee, E.A.: Metronomy: a function-architecture co-simulation framework for timing verification of cyber-physical systems. In: Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis, p. 24. ACM (2014)

    Google Scholar 

  29. H-Inception Consortium: Heterogeneous Inception Project (2012–2015). https://www-soc.lip6.fr/trac/hinception

  30. IEEE: SystemC. IEEE Standard 1666–2011 (2011)

    Google Scholar 

  31. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)

    Article  Google Scholar 

  32. Li, L.W., Genius, D., Apvrille, L.: Formal and virtual multi-level design space exploration. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017. CCIS, vol. 880, pp. 47–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8_3

    Chapter  Google Scholar 

  33. Mancuso, F.J.N., et al.: Focused cardiac ultrasound using a pocket-size device in the emergency room. Arquivos brasileiros de cardiologia 103(6), 530–537 (2014)

    Google Scholar 

  34. Pedroza, G., Knorreck, D., Apvrille, L.: AVATAR: a SysML environment for the formal verification of safety and security properties. In: The 11th IEEE Conference on Distributed Systems and New Technologies (NOTERE), Paris, France (2011)

    Google Scholar 

  35. Ptolemy.org (ed.): System Design, Modeling, and Simulation using Ptolemy II. Univ. Berkeley (2014)

    Google Scholar 

  36. Qiu, W., Yu, Y., Tsang, F.K., Sun, L.: An FPGA-based open platform for ultrasound biomicroscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(7), 1432–1442 (2012)

    Article  Google Scholar 

  37. Quillevere, H.: Gtk Analog Wave viewer (2019). http://www.rvq.fr/linux/gaw.php

  38. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, Amsterdam (2013)

    Google Scholar 

  39. Sikdar, S., Managuli, R., Mitake, T., Hayashi, T., Kim, Y.: Programmable ultrasound scan conversion on a media-processor-based system. In: Medical Imaging: Visualization, Display, and Image-Guided Procedures, vol. 4319, pp. 699–711. Int. Society for Optics and Photonics (2001)

    Google Scholar 

  40. SocLib consortium: The SoCLib project: An Integrated System-on-Chip Modelling and Simulation Platform (2003). www.soclib.fr

  41. Taha, S., Radermacher, A., Gérard, S.: An entirely model-based framework for hardware design and simulation. In: Hinchey, M., et al. (eds.) BICC/DIPES -2010. IAICT, vol. 329, pp. 31–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15234-4_5

    Chapter  Google Scholar 

  42. Tse, K.H., Luk, W.H., Lam, M.C.: Pocket-sized versus standard ultrasound machines in abdominal imaging. Singapore Med. J. 55(6), 325 (2014)

    Article  Google Scholar 

  43. Vachoux, A., Grimm, C., Einwich, K.: Analog and mixed signal modelling with SystemC-AMS. In: ISCAS (3), pp. 914–917. IEEE (2003)

    Google Scholar 

  44. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design approach for embedded system modeling and code generation with UML and MARTE. In: DATE, pp. 226–231. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Genius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genius, D., Bournias, I., Apvrille, L., Chotin, R. (2021). Model-Based Virtual Prototyping of CPS: Application to Bio-Medical Devices. In: Hammoudi, S., Pires, L.F., Selić, B. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2020. Communications in Computer and Information Science, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-67445-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67445-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67444-1

  • Online ISBN: 978-3-030-67445-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics