Abstract
Deep neural networks (DNNs) are becoming widespread, and can often outperform manually-created systems. However, these networks are typically opaque to humans, and may demonstrate undesirable behavior in corner cases that were not encountered previously. In order to mitigate this risk, one approach calls for augmenting DNNs with hand-crafted override rules. These override rules serve to prevent the DNN from making certain decisions, when certain criteria are met. Here, we build on this approach and propose to bring together DNNs and the well-studied scenario-based modeling paradigm, by encoding override rules as simple and intuitive scenarios. We demonstrate that the scenario-based paradigm can render override rules more comprehensible to humans, while keeping them sufficiently powerful and expressive to increase the overall safety of the model. We propose a method for applying scenario-based modeling to this new setting, and apply it to multiple DNN models. (This paper substantially extends the paper titled “Guarded Deep Learning using Scenario-Based Modeling”, published in Modelsward 2020 [47]. Most notably, it includes an additional case study, extends the approach to recurrent neural networks, and discusses various aspects of the proposed paradigm more thoroughly).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete Problems in AI Safety (2016). Technical report. https://arxiv.org/abs/1606.06565
Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger, S.: Run-time optimization for learned controllers through quantitative games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_36
Bar-Sinai, M., Weiss, G., Shmuel, R.: BPjs: an extensible, open infrastructure for behavioral programming research. In: Proceedings 21st ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 59–60 (2018)
Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11
Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_39
Bojarski, M., et al.: End to End Learning for Self-Driving Cars (2016). Technical report. http://arxiv.org/abs/1604.07316
Branicky, M.: Behavioral programming. In: Working Notes AAAI Spring Symposium on Hybrid Systems and AI (1999)
Brooks, R.: A robust layered control system for a mobile robot. Robot. Autom. 2(1), 14–23 (1986)
Chicco, D., Sadowski, P., Baldi, P.: Deep autoencoder neural networks for gene ontology annotation predictions. In: Proceedings 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (BCB), pp. 533–540 (2014)
Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: fooling deep structured prediction models. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS) (2017)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR) 12, 2493–2537 (2011)
Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Formal Methods Syst. Des. (FMSD) 19(1), 45–80 (2001)
Desai, A., Ghosh, S., Seshia, S., Shankar, N., Tiwari, A.: SOTER: Programming Safe Robotics System using Runtime Assurance (2018). Technical report. https://arxiv.org/abs/1808.07921
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018). Technical Report. http://arxiv.org/abs/1810.04805
Elkahky, A., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of the 24th International Conference on World Wide Web (WWW), pp. 278–288 (2015)
Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)
Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis, and enforcement abilities. J. Formal Methods Syst. Des. (FMSD) 38(3), 223–262 (2011)
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev, M.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P) (2018)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Gottschlich, J., et al.: The three pillars of machine programming. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (MAPL), pp. 69–80 (2018)
Greenyer, J., et al.: ScenarioTools – a tool suite for the scenario-based modeling and analysis of reactive systems. J. Sci. Comput. Program. (J. SCP) 149, 15–27 (2017)
Greenyer, J., Gritzner, D., Katz, G., Marron, A.: Scenario-based modeling and synthesis for reactive systems with dynamic system structure in ScenarioTools. In: Proceedings of the 19th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 16–23 (2016)
Greenyer, J., et al.: Distributed execution of scenario-based specifications of structurally dynamic cyber-physical systems. In: Proceedings of the 3rd International Conference on System-Integrated Intelligence: New Challenges for Product and Production Engineering (SYSINT), pp. 552–559 (2016)
Gritzner, D., Greenyer, J.: Synthesizing executable PLC code for robots from scenario-based GR(1) specifications. In: Seidl, M., Zschaler, S. (eds.) STAF 2017. LNCS, vol. 10748, pp. 247–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74730-9_23
Hamlen, K., Morrisett, G., Schneider, F.: Computability classes for enforcement mechanisms. ACM Trans. Program. Lang. Syst. (TOPLAS) 28(1), 175–205 (2006)
Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_25
Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L., Weiss, G.: On composing and proving the correctness of reactive behavior. In: Proceedings of the 13th International Conference on Embedded Software (EMSOFT), pp. 1–10 (2013)
Harel, D., Kantor, A., Katz, G., Marron, A., Weiss, G., Wiener, G.: Towards behavioral programming in distributed architectures. J. Sci. Comput. Program. (J. SCP) 98, 233–267 (2015)
Harel, D., Katz, G.: Scaling-up behavioral programming: steps from basic principles to application architectures. In: Proceedings of the 4th SPLASH Workshop on Programming based on Actors, Agents and Decentralized Control (AGERE!), pp. 95–108 (2014)
Harel, D., Katz, G., Lampert, R., Marron, A., Weiss, G.: On the succinctness of idioms for concurrent programming. In: Proceedings of the 26th International Conference on Concurrency Theory (CONCUR), pp. 85–99 (2015)
Harel, D., Katz, G., Marelly, R., Marron, A.: An initial wise development environment for behavioral models. In: Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 600–612 (2016)
Harel, D., Katz, G., Marelly, R., Marron, A.: First steps towards a wise development environment for behavioral models. Int. J. Inf. Syst. Model. Des. (IJISMD) 7(3), 1–22 (2016)
Harel, D., Katz, G., Marelly, R., Marron, A.: Wise computing: toward endowing system development with proactive wisdom. IEEE Comput. 51(2), 14–26 (2018)
Harel, D., Katz, G., Marron, A., Sadon, A., Weiss, G.: Executing scenario-based specification with dynamic generation of rich events. In: Hammoudi, S., Pires, L.F., Selić, B. (eds.) MODELSWARD 2019. CCIS, vol. 1161, pp. 246–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37873-8_11
Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of reactive programs. In: Proceedings of the 17th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 3–12 (2012)
Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of safety and liveness violations in reactive programs. Trans. Comput. Collect. Intell. (TCCI) 16, 1–33 (2014)
Harel, D., Katz, G., Marron, A., Weiss, G.: The effect of concurrent programming idioms on verification. In: Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 363–369 (2015)
Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2_12
Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM (CACM) 55(7), 90–100 (2012)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invariant inference. In: Proceedings of the 18th International Symposium on Automated Technology for Verification and Analysis (ATVA) (2020)
Jay, N., Rotman, N., Brighten Godfrey, P., Schapira, M., Tamar, A.: Internet congestion control via deep reinforcement learning. In: Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS) (2018)
Ji, Y., Lafortune, S.: Enforcing opacity by publicly known edit functions. In: Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pp. 12–15 (2017)
Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression for aircraft collision avoidance systems. In: Proceedings of the 35th Digital Avionics Systems Conference (DASC), pp. 1–10 (2016)
Katz, G.: On module-based abstraction and repair of behavioral programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 518–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_35
Katz, G.: Guarded deep learning using scenario-based modeling. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 126–136 (2020)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Katz, G., Barrett, C., Harel, D.: Theory-aided model checking of concurrent transition systems. In: Proceedings of the 15th International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 81–88 (2015)
Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Katz, G., Marron, A., Sadon, A., Weiss, G.: On-the-fly construction of composite events in scenario-based modeling using constraint solvers. In: Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 143–156 (2019)
Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems. In: Proceedings of the 1st ACM SIGCOMM Workshop on Network Meets AI & ML (NetAI) (2019)
Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0053381
Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.: Toward Scalable Verification for Safety-Critical Deep Networks (2018). Technical report. http://arxiv.org/abs/1801.05950
Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial Examples in the Physical World (2016). Technical report. http://arxiv.org/abs/1607.02533
Lipton, Z., Kale, D., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. In: Proceedings of the 4th International Conference on Learning Representations (ICLR) (2016)
Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNets), pp. 50–56 (2016)
Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource Management with Deep Reinforcement Learning: Implementation (2016). https://github.com/hongzimao/deeprm
Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with pensieve. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), pp. 197–210 (2017)
Marron, A., et al.: Six (im)possible things before breakfast: building-blocks and design-principles for wise computing. In: Proceedings of the 19th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 94–100 (2016)
Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 807–814 (2010)
Phan, D., Yang, J., Grosu, R., Smolka, S., Stoller, S.: Collision avoidance for mobile robots with limited sensing and limited information about moving obstacles. J. Formal Methods Syst. Des. (FMSD) 51(1), 62–68 (2017)
Schierman, J., et al.: Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems (2015). Technical report. https://apps.dtic.mil/docs/citations/AD1010277
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). Technical report. http://arxiv.org/abs/1409.1556
Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Distributing scenario-based models: a replicate-and-project approach. In: Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 182–195 (2017)
Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Efficient distributed execution of multi-component scenario-based models. Commun. Comput. Inf. Sci. (CCIS) 880, 449–483 (2018)
Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)
Szegedy, C., et al.: Intriguing Properties of Neural Networks (2013). Technical report. http://arxiv.org/abs/1312.6199
Wan, L., Wang, Q., Papir, A., Lopez-Moreno, I.: Generalized End-to-End Loss for Speaker Verification (2017). Technical Report. http://arxiv.org/abs/1710.10467
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX Security Symposium (2018)
Wu, M., Wang, J., Deshmukh, J., Wang, C.: Shield Synthesis for Real: Enforcing Safety in Cyber-Physical Systems (2019). Technical report. https://arxiv.org/abs/1908.05402
Wu, Y., Raman, V., Rawlings, B., Lafortune, S., Seshia, S.: Synthesis of obfuscation policies to ensure privacy and utility. J. Autom. Reason. 60(1), 107–131 (2018)
Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification of recurrent neural networks for cognitive tasks via reachability analysis. In: Proceedings of the 24th Conference on European Conference on Artificial Intelligence (ECAI) (2020)
Acknowledgements
We thank Yafim (Fima) Kazak for his contributions to this project. This work was partially supported by grants from the Binational Science Foundation (2017662) and the Israel Science Foundation (683/18).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Katz, G. (2021). Augmenting Deep Neural Networks with Scenario-Based Guard Rules. In: Hammoudi, S., Pires, L.F., Selić, B. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2020. Communications in Computer and Information Science, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-67445-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-67445-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67444-1
Online ISBN: 978-3-030-67445-8
eBook Packages: Computer ScienceComputer Science (R0)