Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Augmenting Deep Neural Networks with Scenario-Based Guard Rules

  • Conference paper
  • First Online:
Model-Driven Engineering and Software Development (MODELSWARD 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1361))

Abstract

Deep neural networks (DNNs) are becoming widespread, and can often outperform manually-created systems. However, these networks are typically opaque to humans, and may demonstrate undesirable behavior in corner cases that were not encountered previously. In order to mitigate this risk, one approach calls for augmenting DNNs with hand-crafted override rules. These override rules serve to prevent the DNN from making certain decisions, when certain criteria are met. Here, we build on this approach and propose to bring together DNNs and the well-studied scenario-based modeling paradigm, by encoding override rules as simple and intuitive scenarios. We demonstrate that the scenario-based paradigm can render override rules more comprehensible to humans, while keeping them sufficiently powerful and expressive to increase the overall safety of the model. We propose a method for applying scenario-based modeling to this new setting, and apply it to multiple DNN models. (This paper substantially extends the paper titled “Guarded Deep Learning using Scenario-Based Modeling”, published in Modelsward 2020 [47]. Most notably, it includes an additional case study, extends the approach to recurrent neural networks, and discusses various aspects of the proposed paradigm more thoroughly).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete Problems in AI Safety (2016). Technical report. https://arxiv.org/abs/1606.06565

  2. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger, S.: Run-time optimization for learned controllers through quantitative games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_36

    Chapter  Google Scholar 

  4. Bar-Sinai, M., Weiss, G., Shmuel, R.: BPjs: an extensible, open infrastructure for behavioral programming research. In: Proceedings 21st ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 59–60 (2018)

    Google Scholar 

  5. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11

    Chapter  Google Scholar 

  6. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_39

    Chapter  Google Scholar 

  7. Bojarski, M., et al.: End to End Learning for Self-Driving Cars (2016). Technical report. http://arxiv.org/abs/1604.07316

  8. Branicky, M.: Behavioral programming. In: Working Notes AAAI Spring Symposium on Hybrid Systems and AI (1999)

    Google Scholar 

  9. Brooks, R.: A robust layered control system for a mobile robot. Robot. Autom. 2(1), 14–23 (1986)

    Google Scholar 

  10. Chicco, D., Sadowski, P., Baldi, P.: Deep autoencoder neural networks for gene ontology annotation predictions. In: Proceedings 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (BCB), pp. 533–540 (2014)

    Google Scholar 

  11. Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: fooling deep structured prediction models. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  12. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR) 12, 2493–2537 (2011)

    MATH  Google Scholar 

  13. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Formal Methods Syst. Des. (FMSD) 19(1), 45–80 (2001)

    Article  Google Scholar 

  14. Desai, A., Ghosh, S., Seshia, S., Shankar, N., Tiwari, A.: SOTER: Programming Safe Robotics System using Runtime Assurance (2018). Technical report. https://arxiv.org/abs/1808.07921

  15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018). Technical Report. http://arxiv.org/abs/1810.04805

  16. Elkahky, A., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of the 24th International Conference on World Wide Web (WWW), pp. 278–288 (2015)

    Google Scholar 

  17. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

    Article  Google Scholar 

  18. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis, and enforcement abilities. J. Formal Methods Syst. Des. (FMSD) 38(3), 223–262 (2011)

    Article  Google Scholar 

  19. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev, M.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P) (2018)

    Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  21. Gottschlich, J., et al.: The three pillars of machine programming. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (MAPL), pp. 69–80 (2018)

    Google Scholar 

  22. Greenyer, J., et al.: ScenarioTools – a tool suite for the scenario-based modeling and analysis of reactive systems. J. Sci. Comput. Program. (J. SCP) 149, 15–27 (2017)

    Google Scholar 

  23. Greenyer, J., Gritzner, D., Katz, G., Marron, A.: Scenario-based modeling and synthesis for reactive systems with dynamic system structure in ScenarioTools. In: Proceedings of the 19th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 16–23 (2016)

    Google Scholar 

  24. Greenyer, J., et al.: Distributed execution of scenario-based specifications of structurally dynamic cyber-physical systems. In: Proceedings of the 3rd International Conference on System-Integrated Intelligence: New Challenges for Product and Production Engineering (SYSINT), pp. 552–559 (2016)

    Google Scholar 

  25. Gritzner, D., Greenyer, J.: Synthesizing executable PLC code for robots from scenario-based GR(1) specifications. In: Seidl, M., Zschaler, S. (eds.) STAF 2017. LNCS, vol. 10748, pp. 247–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74730-9_23

    Chapter  Google Scholar 

  26. Hamlen, K., Morrisett, G., Schneider, F.: Computability classes for enforcement mechanisms. ACM Trans. Program. Lang. Syst. (TOPLAS) 28(1), 175–205 (2006)

    Article  Google Scholar 

  27. Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_25

    Chapter  Google Scholar 

  28. Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L., Weiss, G.: On composing and proving the correctness of reactive behavior. In: Proceedings of the 13th International Conference on Embedded Software (EMSOFT), pp. 1–10 (2013)

    Google Scholar 

  29. Harel, D., Kantor, A., Katz, G., Marron, A., Weiss, G., Wiener, G.: Towards behavioral programming in distributed architectures. J. Sci. Comput. Program. (J. SCP) 98, 233–267 (2015)

    Google Scholar 

  30. Harel, D., Katz, G.: Scaling-up behavioral programming: steps from basic principles to application architectures. In: Proceedings of the 4th SPLASH Workshop on Programming based on Actors, Agents and Decentralized Control (AGERE!), pp. 95–108 (2014)

    Google Scholar 

  31. Harel, D., Katz, G., Lampert, R., Marron, A., Weiss, G.: On the succinctness of idioms for concurrent programming. In: Proceedings of the 26th International Conference on Concurrency Theory (CONCUR), pp. 85–99 (2015)

    Google Scholar 

  32. Harel, D., Katz, G., Marelly, R., Marron, A.: An initial wise development environment for behavioral models. In: Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 600–612 (2016)

    Google Scholar 

  33. Harel, D., Katz, G., Marelly, R., Marron, A.: First steps towards a wise development environment for behavioral models. Int. J. Inf. Syst. Model. Des. (IJISMD) 7(3), 1–22 (2016)

    Article  Google Scholar 

  34. Harel, D., Katz, G., Marelly, R., Marron, A.: Wise computing: toward endowing system development with proactive wisdom. IEEE Comput. 51(2), 14–26 (2018)

    Article  Google Scholar 

  35. Harel, D., Katz, G., Marron, A., Sadon, A., Weiss, G.: Executing scenario-based specification with dynamic generation of rich events. In: Hammoudi, S., Pires, L.F., Selić, B. (eds.) MODELSWARD 2019. CCIS, vol. 1161, pp. 246–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37873-8_11

    Chapter  Google Scholar 

  36. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of reactive programs. In: Proceedings of the 17th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 3–12 (2012)

    Google Scholar 

  37. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of safety and liveness violations in reactive programs. Trans. Comput. Collect. Intell. (TCCI) 16, 1–33 (2014)

    Google Scholar 

  38. Harel, D., Katz, G., Marron, A., Weiss, G.: The effect of concurrent programming idioms on verification. In: Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 363–369 (2015)

    Google Scholar 

  39. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2_12

    Chapter  Google Scholar 

  40. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM (CACM) 55(7), 90–100 (2012)

    Article  Google Scholar 

  41. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  42. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invariant inference. In: Proceedings of the 18th International Symposium on Automated Technology for Verification and Analysis (ATVA) (2020)

    Google Scholar 

  43. Jay, N., Rotman, N., Brighten Godfrey, P., Schapira, M., Tamar, A.: Internet congestion control via deep reinforcement learning. In: Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  44. Ji, Y., Lafortune, S.: Enforcing opacity by publicly known edit functions. In: Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pp. 12–15 (2017)

    Google Scholar 

  45. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression for aircraft collision avoidance systems. In: Proceedings of the 35th Digital Avionics Systems Conference (DASC), pp. 1–10 (2016)

    Google Scholar 

  46. Katz, G.: On module-based abstraction and repair of behavioral programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 518–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_35

    Chapter  Google Scholar 

  47. Katz, G.: Guarded deep learning using scenario-based modeling. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 126–136 (2020)

    Google Scholar 

  48. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  49. Katz, G., Barrett, C., Harel, D.: Theory-aided model checking of concurrent transition systems. In: Proceedings of the 15th International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 81–88 (2015)

    Google Scholar 

  50. Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  51. Katz, G., Marron, A., Sadon, A., Weiss, G.: On-the-fly construction of composite events in scenario-based modeling using constraint solvers. In: Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 143–156 (2019)

    Google Scholar 

  52. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems. In: Proceedings of the 1st ACM SIGCOMM Workshop on Network Meets AI & ML (NetAI) (2019)

    Google Scholar 

  53. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0053381

    Chapter  Google Scholar 

  54. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.: Toward Scalable Verification for Safety-Critical Deep Networks (2018). Technical report. http://arxiv.org/abs/1801.05950

  55. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial Examples in the Physical World (2016). Technical report. http://arxiv.org/abs/1607.02533

  56. Lipton, Z., Kale, D., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. In: Proceedings of the 4th International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  57. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNets), pp. 50–56 (2016)

    Google Scholar 

  58. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource Management with Deep Reinforcement Learning: Implementation (2016). https://github.com/hongzimao/deeprm

  59. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with pensieve. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), pp. 197–210 (2017)

    Google Scholar 

  60. Marron, A., et al.: Six (im)possible things before breakfast: building-blocks and design-principles for wise computing. In: Proceedings of the 19th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 94–100 (2016)

    Google Scholar 

  61. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 807–814 (2010)

    Google Scholar 

  62. Phan, D., Yang, J., Grosu, R., Smolka, S., Stoller, S.: Collision avoidance for mobile robots with limited sensing and limited information about moving obstacles. J. Formal Methods Syst. Des. (FMSD) 51(1), 62–68 (2017)

    Article  Google Scholar 

  63. Schierman, J., et al.: Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems (2015). Technical report. https://apps.dtic.mil/docs/citations/AD1010277

  64. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  65. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). Technical report. http://arxiv.org/abs/1409.1556

  66. Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Distributing scenario-based models: a replicate-and-project approach. In: Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 182–195 (2017)

    Google Scholar 

  67. Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Efficient distributed execution of multi-component scenario-based models. Commun. Comput. Inf. Sci. (CCIS) 880, 449–483 (2018)

    Google Scholar 

  68. Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Book  Google Scholar 

  69. Szegedy, C., et al.: Intriguing Properties of Neural Networks (2013). Technical report. http://arxiv.org/abs/1312.6199

  70. Wan, L., Wang, Q., Papir, A., Lopez-Moreno, I.: Generalized End-to-End Loss for Speaker Verification (2017). Technical Report. http://arxiv.org/abs/1710.10467

  71. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX Security Symposium (2018)

    Google Scholar 

  72. Wu, M., Wang, J., Deshmukh, J., Wang, C.: Shield Synthesis for Real: Enforcing Safety in Cyber-Physical Systems (2019). Technical report. https://arxiv.org/abs/1908.05402

  73. Wu, Y., Raman, V., Rawlings, B., Lafortune, S., Seshia, S.: Synthesis of obfuscation policies to ensure privacy and utility. J. Autom. Reason. 60(1), 107–131 (2018)

    Article  MathSciNet  Google Scholar 

  74. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification of recurrent neural networks for cognitive tasks via reachability analysis. In: Proceedings of the 24th Conference on European Conference on Artificial Intelligence (ECAI) (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Yafim (Fima) Kazak for his contributions to this project. This work was partially supported by grants from the Binational Science Foundation (2017662) and the Israel Science Foundation (683/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katz, G. (2021). Augmenting Deep Neural Networks with Scenario-Based Guard Rules. In: Hammoudi, S., Pires, L.F., Selić, B. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2020. Communications in Computer and Information Science, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-67445-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67445-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67444-1

  • Online ISBN: 978-3-030-67445-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics