Abstract
The high efficiency of control between multiple drones has become a hot topic of research nowadays. Due to the increased demand for combat operations and the increasing number of drones, the efficiency of control between multiple drones has become a hot research topic. Drawing on the principles of some communication in swarm intelligence, it is of great significance for realizing the autonomous cooperative control between UAVs. Learning from the Olfati-Saber algorithm, this paper proposes an optimized algorithm with virtual leaders, in order to make the group speed converge faster and more stable. Then, this paper also shows the impact of variable-speed virtual leaders on complex drone communication systems. Subsequently, two models are simply analyzed and compared with each other in the article. Through the simulation, we prove the effectiveness of certain variable speed virtual leaders for decentralized clusters of complex UAV systems, which improves the application of Olfati-Saber model in practice.
This work was supported in part by the National Key Research and Development Program (Grant Nos. 2016YFB1200100), and the National Natural Science Foundation of China (NSFC) (Grant Nos. 61827901 and 91738301).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chaves-Gonzalez, J.M., Vega-Rodriguez, M.A., Granado-Criado, J.M.: A multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA sequence design. Eng. Appl. Artif. Intell. 26(9), 2045–2057 (2013)
Ok, C., Lee, S., Kumara, S.: Group preference modeling for intelligent shared environments: social welfare beyond the sum. Inf. Sci. 278, 588–598 (2014)
Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)
Su, H., Wang, X.F., Yang, W.: Flocking in multi-agent systems with multiple virtual leaders. Asian J. Control 10(2), 238–245 (2008)
Luo, X.Y., Li, S.B., Guan, X.P.: Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recogn. Lett. 31(9), 800–805 (2010)
Shi, G.D., Hong, Y.G., Johansson, K.H.: Connectivity and set tracking of multi-agent systems guided bu multiple moving leaders. IEEE Trans. Autom. Control 57(3), 663–676 (2012)
Liu, J., Ren, X.M., Ma, H.B.: Adaptive swarm optimization for locating and tracking multiple targets. Appl. Soft Comput. 12(11), 3656–3670 (2012)
Hutchison, M.G.: A method for estimating range requirements of tactical reconnaissance UAVs. In: AIAA’s 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, Virginia, pp. 120–124 (2002)
Szczerba, R.J., Galkowski, P., Glicktein, I.S., et al.: Robust algorithm for real-time route planning. IEEE Trans. Aerosp. Electron. Syst. 36(3), 869–878 (2000)
Jevtić A, Andina D, Jaimes A., et al.: Unmanned aerial vehicle route optimization using ant system algorithm. In: 2010 5th International Conference on System of Systems Engineering (So SE), pp. 1–6. IEEE (2010)
Nygard, K.E., Chandler, P.R., Pachter, M.: Dynamic network flow optimization models for air vehicle resource allocation. In: Proceedings of the 2001 American Control Conference, vol. 3, pp. 1853–1858. IEEE (2001)
Wei, L., Wei, Z.: Method of tasks allocation of multi-UAVs based on particles swarm optimization. Control Decis. 25(9), 1359–1363 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Jing, Y. (2021). Research on Multi-UAV Swarm Control Based on Olfati-Saber Algorithm with Variable Speed Virtual Leader. In: Li, B., Li, C., Yang, M., Yan, Z., Zheng, J. (eds) IoT as a Service. IoTaaS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-67514-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-67514-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67513-4
Online ISBN: 978-3-030-67514-1
eBook Packages: Computer ScienceComputer Science (R0)