Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Description of Block Model on Graph

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12459))

Abstract

Existing block modeling methods can detect communities as blocks. However it remains a challenge to easily explain to a human why nodes belong to the same block. Such a description is very useful for answering why people in the same community tend to interact cohesively. In this paper we explore a novel problem: Given a block model already found, describe the blocks using an auxiliary set of information. We formulate a combinatorial optimization problem which finds a unique disjunction of the auxiliary information shared by the nodes either in the same block or between a pair of different blocks. The former terms intra-block description, the latter inter-block description. Given an undirected graph and its \(k-\)block model, our method generates \(k + \frac{k(k-1)}{2}\) different descriptions. If the tags are descriptors of events occurring at the vertices, our descriptions can be interpreted as common events occurring within blocks and between blocks. We show that this problem is intractable even for simple cases, e.g., when the underlying graph is a tree with just two blocks. However, simple and efficient ILP formulations and algorithms exist for its relaxation and yield insights different from a state-of-the-art related work in unsupervised description. We empirically show the power of our work on multiple real-world large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here \(\mathbf {D}\) denotes a diagonal matrix. We use \(\Vert \bullet \Vert _F\) to denote the Frobenius norm.

  2. 2.

    https://www.oxfordbibliographies.com/view/document/obo-9780199756384/obo-9780199756384-0080.xml.

  3. 3.

    When this condition does not hold, our method can still be used but just with these edges removed as they are unexplainable.

  4. 4.

    Proofs for our theorems, our codes and other supplementary materials are available on https://github.com/ZilongBai/ECMLPKDD2020TDBMG. .

  5. 5.

    http://people.tamu.edu/~xhuang/BlogCatalog.mat.zip.

  6. 6.

    http://adni.loni.usc.edu/study-design/collaborative-studies/dod-adni.

References

  1. Abbe, E.: Community detection and stochastic block models: recent developments. J. Mach. Learn. Res. 18(1), 6446–6531 (2017)

    MathSciNet  Google Scholar 

  2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  3. Akar, E., Mardikyan, S.: User roles and contribution patterns in online communities: a managerial perspective. Sage Open 8(3), 2158244018794773 (2018)

    Article  Google Scholar 

  4. Atzmueller, M.: Descriptive community detection. In: Missaoui, R., Kuznetsov, S.O., Obiedkov, S. (eds.) Formal Concept Analysis of Social Networks. LNSN, pp. 41–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64167-6_3

    Chapter  Google Scholar 

  5. Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)

    Article  Google Scholar 

  6. Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: FLAIRS (2011)

    Google Scholar 

  7. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  8. Bai, Z., Qian, B., Davidson, I.: Discovering models from structural and behavioral brain imaging data. In: SIGKDD, pp. 1128–1137 (2018)

    Google Scholar 

  9. Bai, Z., Walker, P., Tschiffely, A., Wang, F., Davidson, I.: Unsupervised network discovery for brain imaging data. In: SIGKDD, pp. 55–64 (2017)

    Google Scholar 

  10. Chabert, M., Solnon, C.: Constraint programming for multi-criteria conceptual clustering. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 460–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_30

    Chapter  Google Scholar 

  11. Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on Twitter. In: ICWSM (2011)

    Google Scholar 

  12. Davidson, I., Gourru, A., Ravi, S.: The cluster description problem-complexity results, formulations and approximations. In: NIPS, pp. 6190–6200 (2018)

    Google Scholar 

  13. Deshpande, Y., Sen, S., Montanari, A., Mossel, E.: Contextual stochastic block models. In: NIPS, pp. 8581–8593 (2018)

    Google Scholar 

  14. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: NIPS, pp. 592–603 (2018)

    Google Scholar 

  15. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: SIGKDD, pp. 126–135 (2006)

    Google Scholar 

  16. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st MIPRO, pp. 0210–0215. IEEE (2018)

    Google Scholar 

  17. Falih, I., Grozavu, N., Kanawati, R., Bennani, Y.: Community detection in attributed network. In: WWW, pp. 1299–1306 (2018)

    Google Scholar 

  18. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987). https://doi.org/10.1007/BF00114265

    Article  Google Scholar 

  19. Fortunato, S.: Community detection in graphs. Phy. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  20. Funke, T., Becker, T.: Stochastic block models: a comparison of variants and inference methods. PLoS One 14(4), e0215296 (2019)

    Article  Google Scholar 

  21. Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled graphs. Data Min. Knowl. Disc. 28(5), 1586–1610 (2014). https://doi.org/10.1007/s10618-014-0373-y

    Article  MathSciNet  Google Scholar 

  22. Ganji, M., et al.: Image constrained blockmodelling: a constraint programming approach. In: SDM, pp. 19–27 (2018)

    Google Scholar 

  23. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  24. Girvan, M., Newman, M.E.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  25. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE TKDE 25(2), 402–418 (2011)

    MATH  Google Scholar 

  26. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: WSDM, pp. 731–739 (2017)

    Google Scholar 

  27. Kao, H.T., Yan, S., Huang, D., Bartley, N., Hosseinmardi, H., Ferrara, E.: Understanding cyberbullying on Instagram and Ask.fm via social role detection. In: WWW, pp. 183–188 (2019)

    Google Scholar 

  28. Kotthoff, L., O’Sullivan, B., Ravi, S., Davidson, I.: Complex clustering using constraint programming: Modelling electoral map (2015)

    Google Scholar 

  29. Li, D., et al.: Community-based topic modeling for social tagging. In: CIKM (2010)

    Google Scholar 

  30. Müller, B., Reinhardt, J., Strickland, M.T.: Neural Networks: An Introduction. Springer Science & Business Media, Heidelberg (2012)

    MATH  Google Scholar 

  31. Newman, M.E.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  32. Pool, S., Bonchi, F., Leeuwen, M.V.: Description-driven community detection. TIST 5(2), 1–28 (2014)

    Article  Google Scholar 

  33. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the predictions of any classifier. In: SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  34. Rossi, R.A., Ahmed, N.K.: Role discovery in networks. IEEE TKDE 27(4), 1112–1131 (2014)

    Google Scholar 

  35. Sambaturu, P., Gupta, A., Davidson, I., Ravi, S., Vullikanti, A., Warren, A.: Efficient algorithms for generating provably near-optimal cluster descriptors for explainability. In: AAAI, pp. 1636–1643 (2020)

    Google Scholar 

  36. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  37. Stanley, N., Bonacci, T., Kwitt, R., Niethammer, M., Mucha, P.J.: Stochastic block models with multiple continuous attributes. Appl. Netw. Sci. 4(1), 1–22 (2019)

    Article  Google Scholar 

  38. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  39. Tang, J., Jin, R., Zhang, J.: A topic modeling approach and its integration into the random walk framework for academic search. In: IEEE ICDM (2008)

    Google Scholar 

  40. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: SIGKDD, pp. 990–998 (2008)

    Google Scholar 

  41. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: SIGKDD, pp. 817–826 (2009)

    Google Scholar 

  42. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: IEEE ICDM, pp. 1151–1156 (2013)

    Google Scholar 

  43. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6, 3–28 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by ONR Grant N000141812485 and NSF Grants IIS-1910306, IIS-1908530, OAC-1916805, ACI-1443054 (DIBBS), IIS-1633028 (BIG DATA) and CMMI-1745207 (EAGER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Z., Ravi, S.S., Davidson, I. (2021). Towards Description of Block Model on Graph. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics