Abstract
Existing block modeling methods can detect communities as blocks. However it remains a challenge to easily explain to a human why nodes belong to the same block. Such a description is very useful for answering why people in the same community tend to interact cohesively. In this paper we explore a novel problem: Given a block model already found, describe the blocks using an auxiliary set of information. We formulate a combinatorial optimization problem which finds a unique disjunction of the auxiliary information shared by the nodes either in the same block or between a pair of different blocks. The former terms intra-block description, the latter inter-block description. Given an undirected graph and its \(k-\)block model, our method generates \(k + \frac{k(k-1)}{2}\) different descriptions. If the tags are descriptors of events occurring at the vertices, our descriptions can be interpreted as common events occurring within blocks and between blocks. We show that this problem is intractable even for simple cases, e.g., when the underlying graph is a tree with just two blocks. However, simple and efficient ILP formulations and algorithms exist for its relaxation and yield insights different from a state-of-the-art related work in unsupervised description. We empirically show the power of our work on multiple real-world large datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here \(\mathbf {D}\) denotes a diagonal matrix. We use \(\Vert \bullet \Vert _F\) to denote the Frobenius norm.
- 2.
- 3.
When this condition does not hold, our method can still be used but just with these edges removed as they are unexplainable.
- 4.
Proofs for our theorems, our codes and other supplementary materials are available on https://github.com/ZilongBai/ECMLPKDD2020TDBMG. .
- 5.
- 6.
References
Abbe, E.: Community detection and stochastic block models: recent developments. J. Mach. Learn. Res. 18(1), 6446–6531 (2017)
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
Akar, E., Mardikyan, S.: User roles and contribution patterns in online communities: a managerial perspective. Sage Open 8(3), 2158244018794773 (2018)
Atzmueller, M.: Descriptive community detection. In: Missaoui, R., Kuznetsov, S.O., Obiedkov, S. (eds.) Formal Concept Analysis of Social Networks. LNSN, pp. 41–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64167-6_3
Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)
Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: FLAIRS (2011)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)
Bai, Z., Qian, B., Davidson, I.: Discovering models from structural and behavioral brain imaging data. In: SIGKDD, pp. 1128–1137 (2018)
Bai, Z., Walker, P., Tschiffely, A., Wang, F., Davidson, I.: Unsupervised network discovery for brain imaging data. In: SIGKDD, pp. 55–64 (2017)
Chabert, M., Solnon, C.: Constraint programming for multi-criteria conceptual clustering. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 460–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_30
Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on Twitter. In: ICWSM (2011)
Davidson, I., Gourru, A., Ravi, S.: The cluster description problem-complexity results, formulations and approximations. In: NIPS, pp. 6190–6200 (2018)
Deshpande, Y., Sen, S., Montanari, A., Mossel, E.: Contextual stochastic block models. In: NIPS, pp. 8581–8593 (2018)
Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: NIPS, pp. 592–603 (2018)
Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: SIGKDD, pp. 126–135 (2006)
Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st MIPRO, pp. 0210–0215. IEEE (2018)
Falih, I., Grozavu, N., Kanawati, R., Bennani, Y.: Community detection in attributed network. In: WWW, pp. 1299–1306 (2018)
Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987). https://doi.org/10.1007/BF00114265
Fortunato, S.: Community detection in graphs. Phy. Rep. 486(3–5), 75–174 (2010)
Funke, T., Becker, T.: Stochastic block models: a comparison of variants and inference methods. PLoS One 14(4), e0215296 (2019)
Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled graphs. Data Min. Knowl. Disc. 28(5), 1586–1610 (2014). https://doi.org/10.1007/s10618-014-0373-y
Ganji, M., et al.: Image constrained blockmodelling: a constraint programming approach. In: SDM, pp. 19–27 (2018)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)
Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE TKDE 25(2), 402–418 (2011)
Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: WSDM, pp. 731–739 (2017)
Kao, H.T., Yan, S., Huang, D., Bartley, N., Hosseinmardi, H., Ferrara, E.: Understanding cyberbullying on Instagram and Ask.fm via social role detection. In: WWW, pp. 183–188 (2019)
Kotthoff, L., O’Sullivan, B., Ravi, S., Davidson, I.: Complex clustering using constraint programming: Modelling electoral map (2015)
Li, D., et al.: Community-based topic modeling for social tagging. In: CIKM (2010)
Müller, B., Reinhardt, J., Strickland, M.T.: Neural Networks: An Introduction. Springer Science & Business Media, Heidelberg (2012)
Newman, M.E.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)
Pool, S., Bonchi, F., Leeuwen, M.V.: Description-driven community detection. TIST 5(2), 1–28 (2014)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the predictions of any classifier. In: SIGKDD, pp. 1135–1144 (2016)
Rossi, R.A., Ahmed, N.K.: Role discovery in networks. IEEE TKDE 27(4), 1112–1131 (2014)
Sambaturu, P., Gupta, A., Davidson, I., Ravi, S., Vullikanti, A., Warren, A.: Efficient algorithms for generating provably near-optimal cluster descriptors for explainability. In: AAAI, pp. 1636–1643 (2020)
Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6
Stanley, N., Bonacci, T., Kwitt, R., Niethammer, M., Mucha, P.J.: Stochastic block models with multiple continuous attributes. Appl. Netw. Sci. 4(1), 1–22 (2019)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)
Tang, J., Jin, R., Zhang, J.: A topic modeling approach and its integration into the random walk framework for academic search. In: IEEE ICDM (2008)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: SIGKDD, pp. 990–998 (2008)
Tang, L., Liu, H.: Relational learning via latent social dimensions. In: SIGKDD, pp. 817–826 (2009)
Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: IEEE ICDM, pp. 1151–1156 (2013)
Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6, 3–28 (2018)
Acknowledgments
This research is supported by ONR Grant N000141812485 and NSF Grants IIS-1910306, IIS-1908530, OAC-1916805, ACI-1443054 (DIBBS), IIS-1633028 (BIG DATA) and CMMI-1745207 (EAGER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bai, Z., Ravi, S.S., Davidson, I. (2021). Towards Description of Block Model on Graph. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-67664-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67663-6
Online ISBN: 978-3-030-67664-3
eBook Packages: Computer ScienceComputer Science (R0)