Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SoccerMap: A Deep Learning Architecture for Visually-Interpretable Analysis in Soccer

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12461))

  • 2647 Accesses

Abstract

We present a fully convolutional neural network architecture that is capable of estimating full probability surfaces of potential passes in soccer, derived from high-frequency spatiotemporal data. The network receives layers of low-level inputs and learns a feature hierarchy that produces predictions at different sampling levels, capturing both coarse and fine spatial details. By merging these predictions, we can produce visually-rich probability surfaces for any game situation that allows coaches to develop a fine-grained analysis of players’ positioning and decision-making, an as-yet little-explored area in sports. We show the network can perform remarkably well in the estimation of pass success probability, and present how it can be adapted easily to approach two other challenging problems: the estimation of pass-selection likelihood and the prediction of the expected value of a pass. Our approach provides a novel solution for learning a full prediction surface when there is only a single-pixel correspondence between ground-truth outcomes and the predicted probability map. The flexibility of this architecture allows its adaptation to a great variety of practical problems in soccer. We also present a set of practical applications, including the evaluation of passing risk at a player level, the identification of the best potential passing options, and the differentiation of passing tendencies between teams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cakmak, A., Uzun, A., Delibas, E.: Computational modeling of pass effectiveness in soccer. Adv. Complex Syst. 21(03n04), 1850010 (2018)

    Google Scholar 

  2. Eggels, H.: Expected goals in soccer: explaining match results using predictive analytics. In: The Machine Learning and Data Mining for Sports Analytics Workshop, p. 16 (2016)

    Google Scholar 

  3. Fernández, J., Bornn, L.: Wide open spaces: a statistical technique for measuring space creation in professional soccer. In: Proceedings of the 12th MIT Sloan Sports Analytics Conference (2018)

    Google Scholar 

  4. Fernández, J., Bornn, L., Cervone, D.: Decomposing the immeasurable sport: a deep learning expected possession value framework for soccer. In: Proceedings of the 13th MIT Sloan Sports Analytics Conference (2019)

    Google Scholar 

  5. Gudmundsson, J., Horton, M.: Spatio-temporal analysis of team sports. ACM Comput. Surv. (CSUR) 50(2), 22 (2017)

    Article  Google Scholar 

  6. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning- Volume 70, pp. 1321–1330. JMLR. org (2017)

    Google Scholar 

  7. Hubáček, O., Šourek, G., Železný, F.: Deep learning from spatial relations for soccer pass prediction. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA 2018. LNCS (LNAI), vol. 11330, pp. 159–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17274-9_14

    Chapter  MATH  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  9. Long, J., Zhang, N., Darrell, T.: Do convnets learn correspondence? In: Advances in Neural Information Processing Systems, pp. 1601–1609 (2014)

    Google Scholar 

  10. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Article  Google Scholar 

  11. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1742–1750 (2015)

    Google Scholar 

  12. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1796–1804 (2015)

    Google Scholar 

  13. Power, P., Ruiz, H., Wei, X., Lucey, P.: Not all passes are created equal: objectively measuring the risk and reward of passes in soccer from tracking data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1605–1613. ACM (2017)

    Google Scholar 

  14. Rein, R., Memmert, D.: Big data and tactical analysis in elite soccer: future challenges and opportunities for sports science. SpringerPlus 5(1), 1410 (2016)

    Article  Google Scholar 

  15. Spearman, W., Basye, A., Dick, G., Hotovy, R., Pop, P.: Physics-based modeling of pass probabilities in soccer. In: Proceeding of the 11th MIT Sloan Sports Analytics Conference (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández, J., Bornn, L. (2021). SoccerMap: A Deep Learning Architecture for Visually-Interpretable Analysis in Soccer. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67670-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67669-8

  • Online ISBN: 978-3-030-67670-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics