Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-level Gate Feature Aggregation with Spatially Adaptive Batch-Instance Normalization for Semantic Image Synthesis

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12572))

Included in the following conference series:

  • 2625 Accesses

Abstract

In this paper, we focus on the task of generating realistic images given an input semantic layout, which is also called semantic image synthesis. Most of previous methods are based on conditional generative adversarial networks mechanism, which is stacks of convolution, normalization, and non-linearity layers. However, these methods easily generate blurred regions and distorted structures. There are two limits existing: their normalization layers are unable to make a good balance between keeping semantic layout information and geometric changes; and cannot effectively aggregated multi-level feature. To address the above problems, we propose a novel method which incorporates multi-level gate feature aggregation mechanism (GFA) and spatially adaptive batch-instance normalization (SPAda-BIN) for semantic image synthesis. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, in terms of both visual fidelity and quantitative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)

    Google Scholar 

  2. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context (2016)

    Google Scholar 

  3. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks (2017)

    Google Scholar 

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput. Sci. (2014)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  6. Cordts, M., et al: The cityscapes dataset for semantic urban scene understanding (2016)

    Google Scholar 

  7. Ding, H., Jiang, X., Shuai, B., Qun Liu, A., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization (2017)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2016)

    Google Scholar 

  13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  14. Li, X., Zhao, H., Han, L., Tong, Y., Yang, K.: GFF: gated fully fusion for semantic segmentation (2019)

    Google Scholar 

  15. Lin, D., Ji, Y., Lischinski, D., Cohen-Or, D., Huang, H.: Multi-scale context intertwining for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_37

    Chapter  Google Scholar 

  16. Lin, T.Y., et al.: Microsoft COCO: common objects in context (2014)

    Google Scholar 

  17. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant neural networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 2558–2567. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7522-batch-instance-normalization-for-adaptively-style-invariant-neural-networks.pdf

  18. Qi, X., Chen, Q., Jia, J., Koltun, V.: Semi-parametric image synthesis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  20. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. Comput. Sci. (2015)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions (2014)

    Google Scholar 

  22. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs (2017)

    Google Scholar 

  23. Zhou, B., Hang, Z., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

Download references

Acknowledgment

This paper is supported by NSFC (Nos. 61772330, 61533012, 61876109), China Next Generation Internet IPv6 project (Grant No. NGII20170609) and Shanghai authentication key Lab. (2017XCWZK01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, J., Lu, H. (2021). Multi-level Gate Feature Aggregation with Spatially Adaptive Batch-Instance Normalization for Semantic Image Synthesis. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12572. Springer, Cham. https://doi.org/10.1007/978-3-030-67832-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67832-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67831-9

  • Online ISBN: 978-3-030-67832-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics