Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CatMeows: A Publicly-Available Dataset of Cat Vocalizations

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Abstract

This work presents a dataset of cat vocalizations focusing on the meows emitted in three different contexts: brushing, isolation in an unfamiliar environment, and waiting for food. The dataset contains vocalizations produced by 21 cats belonging to two breeds, namely Maine Coon and European Shorthair. Sounds have been recorded using low-cost devices easily available on the marketplace, and the data acquired are representative of real-world cases both in terms of audio quality and acoustic conditions. The dataset is open-access, released under Creative Commons Attribution 4.0 International licence, and it can be retrieved from the Zenodo web repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/.

  2. 2.

    The A-law algorithm is a standard used in European 8-bit PCM digital communications systems to optimize the dynamic range of an analog signal for digitizing.

  3. 3.

    LPCM stands for Linear Pulse-Code Modulation, a standard method to digitally represent sampled analog signals. In a LPCM stream, the amplitude of the analog signal is sampled regularly at uniform intervals, and each sample is quantized to the nearest value within a range of digital linearly spaced steps.

  4. 4.

    Please note that different envelope functions and frame sizes may have different optimal thresholds.

  5. 5.

    https://creativecommons.org/licenses/by/4.0/legalcode.

References

  1. Alías, F., Socoró, J.C., Sevillano, X.: A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds. Appl. Sci. 6(5), 143 (2016)

    Article  Google Scholar 

  2. Bradshaw, J., Cameron-Beaumont, C.: The signalling repertoire of the domestic cat and its undomesticated relatives. In: The Domestic Cat: The Biology of Its Behaviour, pp. 67–94 (2000)

    Google Scholar 

  3. Brown, S.L.: The social behaviour of neutered domestic cats (Felis catus). Ph.D. thesis, University of Southampton (1993)

    Google Scholar 

  4. Camacho, A., Harris, J.G.: A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124(3), 1638–1652 (2008)

    Article  Google Scholar 

  5. Cameron-Beaumont, C.: Visual and tactile communication in the domestic cat (Felis silvestris catus) and undomesticated small-felids. Ph.D. thesis, University of Southampton (1997)

    Google Scholar 

  6. Car Working Group: Headset Profile (HSP) 1.2. Bluetooth SIG (2008)

    Google Scholar 

  7. Carney, H., Gourkow, N.: Impact of stress and distress on cat behaviour and body language. In: Ellis, S., Sparkes, A. (eds.) The ISFM Guide to Feline Stress and Health. Tisbury (Wiltshire): International Society of Feline Medicine (ISFM) (2016)

    Google Scholar 

  8. Casey, R.: Fear and stress in companion animals. In: Horwitz, D., Mills, D., Heath, S. (eds.) BSAVA Manual of Canine and Feline Behavioural Medicine, pp. 144–153. British Small Animal Veterinary Association, Guarantee (2002)

    Google Scholar 

  9. Daniel, P., Weber, R.: Psychoacoustical roughness: implementation of an optimized model. Acta Acust. United Acust. 83(1), 113–123 (1997)

    Google Scholar 

  10. Dara, S., Tumma, P.: Feature extraction by using deep learning: a survey. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1795–1801 (2018)

    Google Scholar 

  11. Eriksson, M., Keeling, L.J., Rehn, T.: Cats and owners interact more with each other after a longer duration of separation. PLOS One 12(10), e0185599 (2017). https://doi.org/10.1371/journal.pone.0185599

    Article  Google Scholar 

  12. Grey, J.M., Gordon, J.W.: Perceptual effects of spectral modifications on musical timbres. J. Acoust. Soc. Am. 63(5), 1493–1500 (1978)

    Article  Google Scholar 

  13. Karsh, E.B., Turner, D.C.: The human-cat relationship. Domestic Cat: Biol. Behav. 159–177 (1988)

    Google Scholar 

  14. Lartillot, O., Toiviainen, P.: A matlab toolbox for musical feature extraction from audio. In: International Conference on Digital Audio Effects, pp. 237–244. Bordeaux (2007)

    Google Scholar 

  15. McComb, K., Taylor, A.M., Wilson, C., Charlton, B.D.: The cry embedded within the purr. Curr. Biol. 19(13), R507–R508 (2009)

    Article  Google Scholar 

  16. Notari, L.: Stress in veterinary behavioural medicine. In: BSAVA Manual of Canine and Feline Behavioural Medicine, pp. 136–145. BSAVA Library (2009)

    Google Scholar 

  17. Ntalampiras, S., et al.: Automatic classification of cat vocalizations emitted in different contexts. Animals 9(8), 543.1–543.14 (2019). https://doi.org/10.3390/ani9080543

    Article  Google Scholar 

  18. Owens, J.L., Olsen, M., Fontein, A., Kloth, C., Kershenbaum, A., Weller, S.: Visual classification of feral cat Felis silvestris catus vocalizations. Curr. Zool. 63(3), 331–339 (2017)

    Article  Google Scholar 

  19. Palestrini, C.: Situational sensitivities. In: Horwitz, D., Mills, D., Heath, S. (eds.) BSAVA Manual of Canine and Feline Behavioural Medicine, pp. 169–181. British Small Animal Veterinary Association, Guarantee (2009)

    Chapter  Google Scholar 

  20. Palestrini, C., et al.: Stress level evaluation in a dog during animal-assisted therapy in pediatric surgery. J. Veterinary Behav. 17, 44–49 (2017)

    Article  Google Scholar 

  21. Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38(4), 548–560 (1965)

    Article  Google Scholar 

  22. Pollard, H.F., Jansson, E.V.: A tristimulus method for the specification of musical timbre. Acta Acust. United Acust. 51(3), 162–171 (1982)

    Google Scholar 

  23. Pongrácz, P.: Modeling evolutionary changes in information transfer: effects of domestication on the vocal communication of dogs (Canis familiaris). Eur. Psychol. 22(4), 219–232 (2017)

    Article  Google Scholar 

  24. Prato Previde, E., et al.: What’s in a meow? A study on human classification and interpretation of domestic cat vocalizations. Animals 10, 1–17 (2020). in press

    Article  Google Scholar 

  25. Telephony Working Group: Hands-Free Profile (HFP) 1.7.1, Bluetooth Profile Specification. Bluetooth SIG (2015)

    Google Scholar 

  26. Vassilakis, P.: Auditory roughness estimation of complex spectra-roughness degrees and dissonance ratings of harmonic intervals revisited. J. Acoust. Soc. Am. 110(5), 2755 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca A. Ludovico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ludovico, L.A., Ntalampiras, S., Presti, G., Cannas, S., Battini, M., Mattiello, S. (2021). CatMeows: A Publicly-Available Dataset of Cat Vocalizations. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics