Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Software Defined Network Dynamics via Diffusions

  • Conference paper
  • First Online:
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2020)

Abstract

Software-Defined Networks (SDN) dynamically modify the paths of Internet flows in response to the quality of service or security needs, and hence frequently modify traffic levels at network routers. Thus network routers often operate in the transient regime, rather than at steady-state, with significant impact on packet loss probabilities and delay. We, therefore, investigate the time-dependent performance of a small network of routers, modelled as G/G/1/N queueing stations. A diffusion approximation is developed to predict the quality of service of the routers in the transient regime. Numerical examples show that the results in the transient regime can differ very significantly from the steady-state results, and therefore that the transient analysis must be taken into account in evaluating the performance of routers in a SDN network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kleinrock, L.: Queueing Systems, Vol. 1: Theory. Wiley, Hoboken (1975)

    Google Scholar 

  2. Kleinrock, L.: Queueing Systems, Vol. 2: Computer Applications. Wiley, Hoboken (1976)

    Google Scholar 

  3. Toral-Cruz, H., Pathan, A.S.K., Pacheco, J.C.R.: Accurate modeling of VoIP traffic QoS parameters in current and future networks with multifractal and Markov models. Math. Comput. Model. 57(11–12), 2832–2845 (2013)

    Article  MathSciNet  Google Scholar 

  4. Buyya, R., et al.: A manifesto for future generation cloud computing: research directions for the next decade. ACM Comput. Surv. (CSUR) 51(5), 1–38 (2019)

    Article  Google Scholar 

  5. McKeown, N., et al.: Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

  6. Tuncer, D., Charalambides, M., Clayman, S., Pavlou, G.: Adaptive resource management and control in software defined networks. IEEE Trans. Netw. Serv. Manag. 12(1), 18–33 (2015)

    Article  Google Scholar 

  7. Xia, W., Wen, Y., Foh, C.H., Niyato, D., Xie, H.: A survey on software-defined networking. IEEE Commun. Surv. Tutor. 17(1), 27–51 (2015)

    Article  Google Scholar 

  8. Gelenbe, E.: On approximate computer systems models. J. ACM 22(2), 261–269 (1975)

    Article  MathSciNet  Google Scholar 

  9. Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8(2), 344–356 (1971)

    Article  MathSciNet  Google Scholar 

  10. Fidler, M.: Survey of deterministic and stochastic service curve models in the network calculus. IEEE Commun. Surv. Tutor. 12(1), 59–86 (2010)

    Article  Google Scholar 

  11. Fidler, M., Rizk, A.: A guide to the stochastic network calculus. IEEE Commun. Surv. Tutor. 17(1), 92–105 (2015)

    Article  Google Scholar 

  12. Mahmood, K., Chilwan, A., Osterbo, O., Jarschel, M.: Modelling of OpenFlow-based software-defined networks: the multiple node case. Inst. Eng. Technol. J. 4(5), 278–284 (2015)

    Google Scholar 

  13. Ansell, J., Seah, W.K.G., Ng, B., Marshall, S.: Making queueing theory more palatable to SDN/OpenFlow-based network practitioners. In: Proceeding of the 2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, pp. 1119–1124. IEEE (2016)

    Google Scholar 

  14. Singh, D., Ng, B., Lai, Y.-C., Lin, Y.-D., Seah, W.K.G.: Modelling software-defined networking: software and hardware switches. J. Comput. Netw. Comput. Appl. 122, 24–36 (2018)

    Article  Google Scholar 

  15. Lai, Y.-C., Ali, A., Hassan, M., Hossain, S., Lin, Y.-D.: Performance modeling and analysis of TCP connections over software defined networks. In: Proceeding of the 2017 IEEE Global Communications Conference, Singapore, pp. 1–6. IEEE (2017)

    Google Scholar 

  16. Fahmin, A., Lai, Y.-C., Hossain, S., Lin, Y.-D., Saha, D.: Performance modeling of SDN with NFV under or aside the controller. In: Proceeding of the 5th International Conference on Future Internet of Things and Cloud Workshops, Prague, pp. 211–216. IEEE (2017)

    Google Scholar 

  17. Miao, W., Min, G., Wu, Y., Wang, H., Hu, J.: Performance modelling and analysis of software defined networking under bursty multimedia traffic. ACM Trans. Multimedia Comput. Commun. Appl. 12(55), 24–36 (2018)

    Google Scholar 

  18. Azodolmolky, S., Wieder, P., Yahyapour, R.: Performance evaluation of a scalable software-defined networking deployment. In: Proceeding of the 2013 Second European Workshop on Software Defined Networks, Berlin, Germany, pp. 68–74. IEEE (2013)

    Google Scholar 

  19. Azodolmolky, S., Nejabati, R., Pazouki, M., Wieder, P., Yahyapour, R., Simeonidou, D.: An analytical model for software defined networking: a network calculus-based approach. In: Proceeding of the IEEE Global Communications Conference, Atlanta, USA, pp. 1397–1402. IEEE (2013)

    Google Scholar 

  20. Czachórski, T., Gelenbe, E., Kuaban, G.S., Marek, D.: Transient behaviour of a network router, accepted. In: Herencsár, N., Benedetto, F., Hosek, J. (eds.) Proceedings of International Conference on Telecommunications and Signal Processing TSP 2020, Milano. IEEE (2020)

    Google Scholar 

  21. Czachórski, T., Pekergin, F.: Diffusion approximation as a modelling tool. In: Kouvatsos, D.D. (ed.) Network Performance Engineering. LNCS, vol. 5233, pp. 447–476. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-02742-0_20

    Chapter  Google Scholar 

  22. Lee, S.K., Bae, M., Kim, H.: Future of IoT networks: a survey. Appl. Sci. 7(10), 1072 (2017)

    Article  Google Scholar 

  23. Gelenbe, E., Domanska, J., Frohlich, P., Nowak, M., Nowak, S.: Self-aware networks that optimize security, QoS and energy. Proc. IEEE 108(7) (2020, accepted for publication)

    Google Scholar 

  24. Gelenbe, E.: Energy packet networks: adaptive energy management for the cloud. In: CloudCP 2012: Proceedings of the 2nd International Workshop on Cloud Computing Platforms, pp. 1–5. ACM (2012). https://doi.org/10.1145/2168697.2168698

  25. Dobson, S., et al.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. (TAAS) 1(2), 223–259 (2006)

    Article  Google Scholar 

  26. Gelenbe, E., Liu, P., Lainé, J.: Genetic algorithms for route discovery. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(6), 1247–1254 (2006)

    Article  Google Scholar 

  27. Francois, F., Gelenbe, E.: Towards a cognitive routing engine for software defined networks. In: Proceeding of the 2016 IEEE International Conference on Communications, Kuala Lumpur, pp. 1–6. IEEE (2016)

    Google Scholar 

  28. Goto, Y., Ng, B., Seah, W.K.G., Takahashi, Y.: Queueing analysis of software defined network with realistic openflow-based switch model. Comput. Netw. 164, 106892 (2019)

    Article  Google Scholar 

  29. Sood, K., Yi, S., Xiang, Y.: Performance analysis of software-defined network router using M/Geo/1. IEEE Commun. Lett. 20(12), 27–51 (2016)

    Article  Google Scholar 

  30. Bozakov, Z., Rizk, A.: Taming SDN controllers in heterogeneous hardware environments. In: Proceeding of the 2013 Second European Workshop on Software Defined Networks, Berlin, Germany, pp. 50–55. IEEE (2013)

    Google Scholar 

  31. Bisnik, N., Abouzeid, A.A.: Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Netw. 7(1), 79–97 (2009)

    Article  Google Scholar 

  32. Gelenbe, E., Pujolle, G.: The behaviour of a single-queue in a general queueing network. Acta Informatica 7, 123–136 (1976). https://doi.org/10.1007/BF00265766

    Article  MathSciNet  MATH  Google Scholar 

  33. Gelenbe, E.: Probabilistic models of computer systems part ii: Diffusion approximations, waiting times and batch arrivals. Acta Informatica 12, 285–303 (1979). https://doi.org/10.1007/BF00268317

    Article  MathSciNet  MATH  Google Scholar 

  34. Marin, G.A., Mang, X., Gelenbe, E., Önvural, R.O.: Statistical call admission control. US Patent 6,222,824 (2001)

    Google Scholar 

  35. Domański, A., Domańska, J., Czachórski, T., Klamka, J., Szygula, J., Marek, D.: Diffusion approximation model of TCP NewReno congestion control mechanism. SN Comput. Sci. 1, 43 (2020)

    Article  Google Scholar 

  36. Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bull. Polish Acad. Sci. Tech. Sci. 41(4), 417–451 (1993)

    MATH  Google Scholar 

  37. Cox, R.P., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall, London (1965)

    MATH  Google Scholar 

  38. https://data.caida.org/datasets/passive-2016/equinix-chicago/20160218-130000.UTC/

Download references

Acknowledgements

This research was supported by the SerIoT Research and Innovation Action, funded by the European Commission (EC) under the H2020-IOT-2017 Program, Grant Agreement 780139. The EC’s support does not constitute an endorsement of this paper, which reflects the views only of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Czachórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czachórski, T., Gelenbe, E., Marek, D. (2021). Software Defined Network Dynamics via Diffusions. In: Calzarossa, M.C., Gelenbe, E., Grochla, K., Lent, R., Czachórski, T. (eds) Modelling, Analysis, and Simulation of Computer and Telecommunication Systems. MASCOTS 2020. Lecture Notes in Computer Science(), vol 12527. Springer, Cham. https://doi.org/10.1007/978-3-030-68110-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68110-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68109-8

  • Online ISBN: 978-3-030-68110-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics