Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FaceHop: A Light-Weight Low-Resolution Face Gender Classification Method

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12668))

Included in the following conference series:

  • 2051 Accesses

Abstract

A light-weight low-resolution face gender classification method, called FaceHop, is proposed in this research. We have witnessed rapid progress in face gender classification accuracy due to the adoption of deep learning (DL) technology. Yet, DL-based systems are not suitable for resource-constrained environments with limited networking and computing. FaceHop offers an interpretable non-parametric machine learning solution. It has desired characteristics such as a small model size, a small training data amount, low training complexity, and low-resolution input images. FaceHop is developed with the successive subspace learning (SSL) principle and built upon the foundation of PixelHop++. The effectiveness of the FaceHop method is demonstrated by experiments. For gray-scale face images of resolution \(32 \times 32\) in the LFW and the CMU Multi-PIE datasets, FaceHop achieves correct gender classification rates of 94.63% and 95.12% with model sizes of 16.9K and 17.6K parameters, respectively. It outperforms LeNet-5 in classification accuracy while LeNet-5 has a model size of 75.8K parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Dass, S.C., Nandakumar, K.: Soft biometric traits for personal recognition systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-0_99

    Chapter  Google Scholar 

  2. Riccio, D., Tortora, G., De Marsico, M., Wechsler, H.: EGA-ethnicity, gender and age, a pre-annotated face database. In: IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings. IEEE, vol. 2012, pp. 1–8 (2012)

    Google Scholar 

  3. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and cots evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)

    Article  Google Scholar 

  4. Kuo, C.-C.J.: Understanding convolutional neural networks with a mathematical model. J. Vis. Commun. Image Represent. 41, 406–413 (2016)

    Article  Google Scholar 

  5. Kuo, C.-C.J.: The CNN as a guided multilayer RECOS transform [lecture notes]. IEEE Sign. Process. Mag. 34(3), 81–89 (2017)

    Article  Google Scholar 

  6. Kuo, C.-C.J., Zhang, M., Li, S., Duan, J., Chen, Y.: Interpretable convolutional neural networks via feedforward design. J. Vis. Commun. Image Represent. 60, 346–359 (2019)

    Article  Google Scholar 

  7. Chen, Y., Rouhsedaghat, M., You, S., Rao, R., Kuo, C.-C.J.: PixelHop++: a small successive-subspace-learning-based (SSL-based) model for image classification. arXiv preprint arXiv:2002.03141 (2020)

  8. Gutta, S., Wechsler, H., Phillips, P.J.: Gender and ethnic classification of face images. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition. IEEE, pp. 194–199 (1998)

    Google Scholar 

  9. Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)

    Article  Google Scholar 

  10. Baluja, S., Rowley, H.A.: Boosting sex identification performance. Int. J. Comput. Vis. 71(1), 111–119 (2007)

    Article  Google Scholar 

  11. Štruc, V., Pavešić, N.: Gabor-based Kernel partial-least-squares discrimination features for face recognition. Informatica 20(1), 115–138 (2009)

    Article  Google Scholar 

  12. Jabid, T., Kabir, M.H., Chae, O.: Gender classification using local directional pattern (LDP). In: 2010 20th International Conference on Pattern Recognition, pp. 2162–2165. IEEE (2010)

    Google Scholar 

  13. Wu, J., Smith, W.A., Hancock, E.R.: Facial gender classification using shape-from-shading. Image Vis. Comput. 28(6), 1039–1048 (2010)

    Article  Google Scholar 

  14. Cao, D., He, R., Zhang, M., Sun, Z., Tan, T.: Real-world gender recognition using multi-order LBP and localized multi-boost learning. In: IEEE International Conference on Identity, Security and Behavior Analysis, pp. 1–6. IEEE (2015)

    Google Scholar 

  15. Li, Y., Wang, R., Liu, H., Jiang, H., Shan, S., Chen, X.: Two birds, one stone: jointly learning binary code for large-scale face image retrieval and attributes prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3819–3827 (2015)

    Google Scholar 

  16. Jia, S., Cristianini, N.: Learning to classify gender from four million images. Pattern Recogn. Lett. 58, 35–41 (2015)

    Article  Google Scholar 

  17. Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E.: Descriptors and regions of interest fusion for in-and cross-database gender classification in the wild. Image Vis. Comput. 57, 15–24 (2017)

    Article  Google Scholar 

  18. Lee, B., Gilani, S.Z., Hassan, G.M., Mian, A.: Facial gender classification-analysis using convolutional neural networks. Digital Image Comput. Tech. Appl. (DICTA) 2019, 1–8 (2019)

    Google Scholar 

  19. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–42 (2015)

    Google Scholar 

  20. Duan, M., Li, K., Yang, C., Li, K.: A hybrid deep learning CNN-ELM for age and gender classification. Neurocomputing 275, 448–461 (2018)

    Article  Google Scholar 

  21. Taherkhani, F., Nasrabadi, N.M., Dawson, J.: A deep face identification network enhanced by facial attributes prediction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  22. Han, H., Jain, A.K., Wang, F., Shan, S., Chen, X.: Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2597–2609 (2017)

    Article  Google Scholar 

  23. Ranjan, R., Patel, V.M., Chellappa, R.: HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2017)

    Article  Google Scholar 

  24. Antipov, G., Baccouche, M., Berrani, S.-A., Dugelay, J.-L.: Effective training of convolutional neural networks for face-based gender and age prediction. Pattern Recogn. 72, 15–26 (2017)

    Article  Google Scholar 

  25. Cheng, J., Li, Y., Wang, J., Yu, L., Wang, S.: Exploiting effective facial patches for robust gender recognition. Tsinghua Sci. Technol. 24(3), 333–345 (2019)

    Article  Google Scholar 

  26. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡ 0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  28. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  29. Turk, M., Pentland, A.: Face recognition using Eigenfaces. In: Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–587 (1991)

    Google Scholar 

  30. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANET: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  31. Chen, Y., Kuo, C.-C.J.: PixelHop: a successive subspace learning (SSL) method for object recognition. J. Vis. Commun. Image Represent. 70, 102749 (2020)

    Google Scholar 

  32. Kuo, C.-C.J., Chen, Y.: On data-driven Saak transform. J. Vis. Commun. Image Represent. 50, 237–246 (2018)

    Article  Google Scholar 

  33. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  34. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report University of Massachusetts, Amherst, pp. 7–49, October 2007

    Google Scholar 

  35. Ferrari, C., Lisanti, G., Berretti, S., Del Bimbo, A.: Effective 3D based frontalization for unconstrained face recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1047–1052. IEEE (2016)

    Google Scholar 

  36. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhdeh Rouhsedaghat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rouhsedaghat, M., Wang, Y., Ge, X., Hu, S., You, S., Kuo, C.C.J. (2021). FaceHop: A Light-Weight Low-Resolution Face Gender Classification Method. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics