Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Local Anomaly Detection in Videos Using Object-Centric Adversarial Learning

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12664))

Included in the following conference series:

Abstract

We propose a novel unsupervised approach based on a two-stage object-centric adversarial framework that only needs object regions for detecting frame-level local anomalies in videos. The first stage consists in learning the correspondence between the current appearance and past gradient images of objects in scenes deemed normal, allowing us to either generate the past gradient from current appearance or the reverse. The second stage extracts the partial reconstruction errors between real and generated images (appearance and past gradient) with normal object behaviour, and trains a discriminator in an adversarial fashion. In inference mode, we employ the trained image generators with the adversarially learned binary classifier for outputting region-level anomaly detection scores. We tested our method on four public benchmarks, UMN, UCSD, Avenue and ShanghaiTech and our proposed object-centric adversarial approach yields competitive or even superior results compared to state-of-the-art methods.

Supported by grants from IVADO and NSERC funding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_21

    Chapter  Google Scholar 

  2. Feng, J.: A implementation of Object-Centric VAD using Tensorflow (2019). https://github.com/fjchange/object_centric_VAD

  3. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR. IEEE (2016)

    Google Scholar 

  4. Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: CVPR. IEEE (2019)

    Google Scholar 

  5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Pix2Pix. In: CVPR. IEEE (2017)

    Google Scholar 

  6. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML. JMLR.org, March 2017

    Google Scholar 

  7. Li, C., Han, Z., Ye, Q., Jiao, J.: Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing 119, 94–100 (2013)

    Article  Google Scholar 

  8. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV. IEEE (2017)

    Google Scholar 

  9. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  10. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: CVPR. IEEE (2018)

    Google Scholar 

  11. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: ICCV. IEEE (2013)

    Google Scholar 

  12. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: ICCV. IEEE (2017)

    Google Scholar 

  13. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: ICME. IEEE (2017)

    Google Scholar 

  14. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR. IEEE (2010)

    Google Scholar 

  15. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR Workshops. IEEE (2009)

    Google Scholar 

  16. Mousavi, H., Mohammadi, S., Perina, A., Chellali, R., Murino, V.: Analyzing tracklets for the detection of abnormal crowd behavior. In: WACV. IEEE (2015)

    Google Scholar 

  17. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV. IEEE (2019)

    Google Scholar 

  18. Ribeiro, M., Lazzaretti, A.E., Lopes, H.S.: A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recogn. Lett. 105, 13–22 (2018)

    Article  Google Scholar 

  19. Roy, P., Bilodeau, G.A.: Adversarially learned abnormal trajectory classifier. In: CRV. IEEE (2019)

    Google Scholar 

  20. Roy, P.R., Bilodeau, G.-A.: Road user abnormal trajectory detection using a deep autoencoder. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 748–757. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_65

    Chapter  Google Scholar 

  21. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. 26, 1992–2004 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sabokrou, M., et al.: AVID: adversarial visual irregularity detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 488–505. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_31

    Chapter  Google Scholar 

  23. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443–1471 (2001)

    Article  Google Scholar 

  24. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. CoRR (2016)

    Google Scholar 

  25. Wang, Z., Hou, C., Li, B., Chen, T., Yao, L., Song, M.: Global abnormal event detection in video via motion information entropy. In: AT-RASC (2018)

    Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  27. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal AutoEncoder for video anomaly detection. In: ACM on Multimedia Conference. ACM Press (2017)

    Google Scholar 

  28. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. CoRR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Raj Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, P.R., Bilodeau, GA., Seoud, L. (2021). Local Anomaly Detection in Videos Using Object-Centric Adversarial Learning. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12664. Springer, Cham. https://doi.org/10.1007/978-3-030-68799-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68799-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68798-4

  • Online ISBN: 978-3-030-68799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics