Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12665))

Included in the following conference series:

Abstract

Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the \(\text {1}^{\text {st}}\) generation such as UADFV and FaceForensics++ up to the latest databases of the \(\text {2}^{\text {nd}}\) generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an exhaustive analysis of both \(\text {1}^{\text {st}}\) and \(\text {2}^{\text {nd}}\) DeepFake generations in terms of facial regions and fake detection performance. Two different methods are considered in our experimental framework: i) the traditional one followed in the literature and based on selecting the entire face as input to the fake detection system, and ii) a novel approach based on the selection of specific facial regions as input to the fake detection system.

Among all the findings resulting from our experiments, we highlight the poor fake detection results achieved even by the strongest state-of-the-art fake detectors in the latest DeepFake databases of the \(\text {2}^{\text {nd}}\) generation, with Equal Error Rate results ranging from 15% to 30%. These results remark the necessity of further research to develop more sophisticated fake detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://apps.apple.com/cn/app/id1465199127.

  2. 2.

    https://www.youtube.com/watch?v=UlvoEW7l5rs.

  3. 3.

    https://github.com/nii-yamagishilab/Capsule-Forensics-v2.

  4. 4.

    https://fakeapp.softonic.com/.

  5. 5.

    https://github.com/MarekKowalski/FaceSwap.

References

  1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: Proceedings of International Workshop on Information Forensics and Security (2018)

    Google Scholar 

  2. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  3. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: OpenFace 2.0: facial behavior analysis toolkit. In: Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition (2018)

    Google Scholar 

  4. Cellan-Jones, R.: Deepfake Videos Double in Nine Months (2019). https://www.bbc.com/news/technology-49961089

  5. Chollet, F.: Xception: deep learning with Depthwise separable convolutions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  6. Citron, D.: How DeepFake Undermine Truth and Threaten Democracy (2019). https://www.ted.com

  7. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.: On the detection of digital face manipulation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  9. Dolhansky, B., Howes, R., Pflaum, B., Baram, N., Ferrer, C.C.: The Deepfake Detection Challenge (DFDC) Preview Dataset. arXiv preprint arXiv:1910.08854 (2019)

  10. Güera, D., Delp, E.: Deepfake video detection using recurrent neural networks. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (2018)

    Google Scholar 

  11. Hinton, G., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: Proceedings of International Conference on Learning Representations Workshop (2018)

    Google Scholar 

  12. King, D.: DLib-ML: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  13. Korshunov, P., Marcel, S.: Deepfakes: a New Threat to Face Recognition? Assessment and Detection. arXiv preprint arXiv:1812.08685 (2018)

  14. Li, Y., Chang, M., Lyu, S.. In Ictu oculi: exposing AI generated fake face videos by detecting eye blinking. In: Proceedings of IEEE International Workshop on Information Forensics and Security (2018)

    Google Scholar 

  15. Li, Y., Lyu, S.: Exposing DeepFake videos by detecting face warping artifacts. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  16. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for DeepFake forensics. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  17. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose DeepFakes and face manipulations. In: Proceedings of IEEE Winter Applications of Computer Vision Workshops (2019)

    Google Scholar 

  18. Neves, J.C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., Proença, H., Fierrez, J.: GANprintR: improved fakes and evaluation of the state-of-the-art in face manipulation detection. IEEE J. Sel. Top. Signal Process. 14, 1038–1048 (2020)

    Article  Google Scholar 

  19. Nguyen, H., Yamagishi, J., Echizen, I.: Use of a Capsule Network to Detect Fake Images and Videos. arXiv preprint arXiv:1910.12467 (2019)

  20. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics: A Large-Scale Video Dataset for Forgery Detection in Human Faces. arXiv preprint arXiv:1803.09179 (2018)

  21. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: Proceedings of IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  22. Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, I., Natarajan, P.: Recurrent convolutional strategies for face manipulation detection in videos. In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  23. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  25. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: DeepFakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020)

    Article  Google Scholar 

  26. Verdoliva, L.: Media forensics and DeepFakes: an overview. IEEE J. Sel. Top. Signal Process. 14, 910–932 (2020)

    Article  Google Scholar 

  27. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (2019)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by projects: PRIMA (H2020-MSCA-ITN-2019-860315), TRESPASS-ETN (H2020-MSCA-ITN-2019-860813), BIBECA (MINECO FEDER RTI2018-101248-B-I00), and Accenture. R. T. is supported by Comunidad de Madrid y Fondo Social Europeo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Tolosana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolosana, R., Romero-Tapiador, S., Fierrez, J., Vera-Rodriguez, R. (2021). DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68821-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68820-2

  • Online ISBN: 978-3-030-68821-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics