Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generating JPEG Steganographic Adversarial Example via Segmented Adversarial Embedding

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12617))

Included in the following conference series:

  • 778 Accesses

Abstract

Nowadays, Convolutional Neural Network (CNN) based steganalytic schemes further improves the detection ability of the steganalyzer comparing with feature based schemes. Besides steganalysis, CNN model can also be used in steganography. Inheriting the mechanism from adversarial attack to CNN model, adversarial embedding is a kind of steganographic scheme that exploits the knowledge of CNN-based steganalyzer. Adversarial embedding can effectively improve security performance of typical adaptive steganographic schemes. In this paper, we propose a novel adversarial embedding scheme for steganography named as Segmented Adversarial Embedding (SAE). The core of SAE is separating the embedding process into several partial embedding processes and performing adversarial embedding in each segment. In each partial embedding process, there is an individual CNN model corresponding to the current embedding stage. In the embedding process, a novel scheme is applied in the cost adjustment. Comparing with the adjustment scheme that utilizes the gradient sign, the new scheme also takes the gradient magnitude into account, which further makes use of the gradient information. Besides the typical implementation of SAE, we also develop a simplified variant with lower complexity. The evaluations on different kinds of steganalyzer prove that SAE is effective to improve the performance of existing steganographic scheme.

X. Zhao—This work is supported by the State Grid Corporation of China Project (5 700-202018268A-0-0-00).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernard, S., Bas, P., Klein, J., Pevny, T.: Explicit optimization of min max steganographic game. IEEE Trans. Inf. Forensics Secur. 16, 812–823 (2021)

    Article  Google Scholar 

  2. Bernard, S., Pevnỳ, T., Bas, P., Klein, J.: Exploiting adversarial embeddings for better steganography. In: Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, pp. 216–221. ACM (2019)

    Google Scholar 

  3. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2019)

    Article  Google Scholar 

  4. Butora, J., Fridrich, J.: Steganography and its detection in JPEG images obtained with the “TRUNC” quantizer. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2762–2766 (2020)

    Google Scholar 

  5. Cogranne, R., Giboulot, Q., Bas, P.: Alaska#2 steganalysis challenge. http://alaska.utt.fr

  6. Denemark, T., Fridrich, J.: Improving steganographic security by synchronizing the selection channel. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec 2015, pp. 5–14. ACM, New York (2015)

    Google Scholar 

  7. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

  8. Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Delp III, E.J., Wong, P.W. (eds.) Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, pp. 13–27. International Society for Optics and Photonics, SPIE (2007)

    Google Scholar 

  9. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  10. Guo, L., Ni, J., Su, W., Tang, C., Shi, Y.: Using statistical image model for JPEG steganography: Uniform embedding revisited. IEEE Trans. Inf. Forensics Secur. 10(12), 2669–2680 (2015)

    Article  Google Scholar 

  11. Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68. ACM (2013)

    Google Scholar 

  12. Holub, V., Fridrich, J.: Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2015)

    Article  Google Scholar 

  13. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  14. Kouider, S., Chaumont, M., Puech, W.: Adaptive steganography by oracle (ASO). In: 2013 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2013

    Google Scholar 

  15. Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)

    Article  Google Scholar 

  16. Ma, S., Zhao, X., Liu, Y.: Adaptive spatial steganography based on adversarial examples. Multimed. Tools Appl. 78(22), 32503–32522 (2019). https://doi.org/10.1007/s11042-019-07994-3

    Article  Google Scholar 

  17. Mo, H., Song, T., Chen, B., Luo, W., Huang, J.: Enhancing jpeg steganography using iterative adversarial examples. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2019)

    Google Scholar 

  18. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  19. Tang, W., Li, B., Tan, S., Barni, M., Huang, J.: Cnn-based adversarial embedding for image steganography. IEEE Trans. Inf. Forensics Secur. 14(8), 2074–2087 (2019)

    Article  Google Scholar 

  20. Zhang, W., Zhang, Z., Zhang, L., Li, H., Yu, N.: Decomposing joint distortion for adaptive steganography. IEEE Trans. Circ. Syst. Video Technol. 27(10), 2274–2280 (2017)

    Article  Google Scholar 

  21. Zhang, Y., Zhang, W., Chen, K., Liu, J., Liu, Y., Yu, N.: Adversarial examples against deep neural network based steganalysis. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 67–72. ACM (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Zhao, X. (2021). Generating JPEG Steganographic Adversarial Example via Segmented Adversarial Embedding. In: Zhao, X., Shi, YQ., Piva, A., Kim, H.J. (eds) Digital Forensics and Watermarking. IWDW 2020. Lecture Notes in Computer Science(), vol 12617. Springer, Cham. https://doi.org/10.1007/978-3-030-69449-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69449-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69448-7

  • Online ISBN: 978-3-030-69449-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics