Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mapping of Sparse 3D Data Using Alternating Projection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12622))

Included in the following conference series:

Abstract

We propose a novel technique to register sparse 3D scans in the absence of texture. While existing methods such as KinectFusion or Iterative Closest Points (ICP) heavily rely on dense point clouds, this task is particularly challenging under sparse conditions without RGB data. Sparse texture-less data does not come with high-quality boundary signal, and this prohibits the use of correspondences from corners, junctions, or boundary lines. Moreover, in the case of sparse data, it is incorrect to assume that the same point will be captured in two consecutive scans. We take a different approach and first re-parameterize the point-cloud using a large number of line segments. In this re-parameterized data, there exists a large number of line intersection (and not correspondence) constraints that allow us to solve the registration task. We propose the use of a two-step alternating projection algorithm by formulating the registration as the simultaneous satisfaction of intersection and rigidity constraints. The proposed approach outperforms other top-scoring algorithms on both Kinect and LiDAR datasets. In Kinect, we can use 100X downsampled sparse data and still outperform competing methods operating on full-resolution data.

S. Ranade and X. Yu—Indicates equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/laboshinl/loam_velodyne.

References

  1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  2. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

  3. Pais, G.D., Miraldo, P., Ramalingam, S., Govindu, V.M., Nascimento, J.C., Chellappa, R.: 3DRegNet: a deep neural network for 3D point registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  4. Besl, P.J., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 14, 239–256 (1992)

    Article  Google Scholar 

  5. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1–10 (1966). https://doi.org/10.1007/BF02289451

    Article  MathSciNet  MATH  Google Scholar 

  6. Nister, D.: An efficient solution to the five-point relative pose problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2003)

    Google Scholar 

  7. Grossberg, M.D., Nayar, S.K.: A general imaging model and a method for finding its parameters. In: IEEE International Conference on Computer Vision (ICCV) (2001)

    Google Scholar 

  8. Stewenius, H., Oskarsson, M., Astrom, K., Nister, D.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision (OMNIVIS) (2005)

    Google Scholar 

  9. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems (RSS) (2014)

    Google Scholar 

  10. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 9, 698–700 (1987)

    Article  Google Scholar 

  11. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A: 4, 629–642 (1987)

    Article  Google Scholar 

  12. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 13, 376–380 (1991)

    Article  Google Scholar 

  13. Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A stochastic iterative closest point algorithm (stochastICP). In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 762–769. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_91

    Chapter  Google Scholar 

  14. Colas, F., Pomerleau, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends® Robot. 4, 1–104 (2015)

    Article  Google Scholar 

  15. Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape reconstruction from 2D landmarks: a convex formulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  16. Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating minimization. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  17. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.M.: Multi-view point registration via alternating optimization. In: AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  18. Schops, T., Sattler, T., Pollefeys, M.: BAD SLAM: bundle adjusted direct RGB-D SLAM. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Campos, J., Cardoso, J., Miraldo, P.: POSEAMM: a unified framework for solving pose problems using an alternating minimization method. In: IEEE International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  20. Theiler, P.W., Wegner, J.D., Schindler, K.: Globally consistent registration of terrestrial laser scans via graph optimization. ISPRS J. Photogramm. Remote Sens. 109, 126–138 (2015)

    Article  Google Scholar 

  21. Campbell, D., Petersson, L.: GOGMA: globally-optimal gaussian mixture alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5685–5694 (2016)

    Google Scholar 

  22. Li, H., Hartley, R.: The 3D–3D registration problem revisited. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2017)

    Google Scholar 

  23. Zhang, J., Singh, S.: Low-drift and real-time lidar odometry and mapping. Auton. Robots 41, 401–416 (2017). https://doi.org/10.1007/s10514-016-9548-2

    Article  Google Scholar 

  24. Yang, J., Li, H., Jia, Y.: Go-ICP: solving 3D registration efficiently and globally optimally. In: IEEE International Conference on Computer Vision (ICCV), pp. 1457–1464 (2013)

    Google Scholar 

  25. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 38, 2241–2254 (2016)

    Article  Google Scholar 

  26. Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic registration of 3D point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1297–1304 (2006)

    Google Scholar 

  27. Straub, J., Campbell, T., How, J.P., Fisher III, J.W.: Efficient global point cloud alignment using Bayesian nonparametric mixtures. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2403–2412 (2017)

    Google Scholar 

  28. Liu, Y., Wang, C., Song, Z., Wang, M.: Efficient global point cloud registration by matching rotation invariant features through translation search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 460–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_28

    Chapter  Google Scholar 

  29. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  30. Miraldo, P., Saha, S., Ramalingam, S.: Minimal solvers for mini-loop closures in 3D multi-scan alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  31. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. (T-RO) 30, 177–187 (2014)

    Article  Google Scholar 

  32. Raposo, C., Lourenço, M., Barreto, J.P., Antunes, M.: Plane-based odometry using an RGB-D camera. In: British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

  33. Zhou, L., Li, Z., Kaess, M.: Automatic extrinsic calibration of a camera and a 3D lidar using line and plane correspondences. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  34. Ma, L., Kerl, C., Stuckler, J., Cremers, D.: CPA-SLAM: consistent plane-model alignment for direct RGB-D SLAM. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1285–1291 (2016)

    Google Scholar 

  35. Bhattacharya, U., Veerawal, S., Govindu, V.M.: Fast multiview 3D scan registration using planar structures. In: International Conference on 3D Vision (3DV), pp. 548–556 (2017)

    Google Scholar 

  36. Liu, C., Wu, J., Furukawa, Y.: FloorNet: a unified framework for floorplan reconstruction from 3D scans. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_13

    Chapter  Google Scholar 

  37. Grant, W.S., Voorhies, R.C., Itti, L.: Efficient velodyne SLAM with point and plane features. Auton. Robots 43(5), 1207–1224 (2018). https://doi.org/10.1007/s10514-018-9794-6

    Article  Google Scholar 

  38. Lu, Y., Song, D.: Robust RGB-D odometry using point and line features. In: IEEE International Conference on Computer Vision (ICCV), pp. 3934–3942 (2015)

    Google Scholar 

  39. Deschaud, J.E.: IMLS-SLAM: scan-to-model matching based on 3D data. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2480–2485 (2018)

    Google Scholar 

  40. Choi, C., Trevor, A.J.B., Christensen, H.I.: RGB-D edge detection and edge-based registration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1568–1575 (2013)

    Google Scholar 

  41. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696 (2012)

    Google Scholar 

  42. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)

    Google Scholar 

  43. Li, H., Hartley, R.: Five-point motion estimation made easy. In: International Conference on Pattern Recognition (ICPR), vol. 1, pp. 630–633 (2006)

    Google Scholar 

  44. Li, B., Heng, L., Lee, G.H., Pollefeys, M.: A 4-point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1601 (2013)

    Google Scholar 

  45. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_20

    Chapter  Google Scholar 

  46. Saurer, O., Vasseur, P., Demonceaux, C., Fraundorfer, F.: A homography formulation to the 3pt plus a common direction relative pose problem. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 288–301. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_20

    Chapter  Google Scholar 

  47. Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 789–794 (2005)

    Google Scholar 

  48. Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_16

    Chapter  Google Scholar 

  49. Kneip, L., Siegwart, R., Pollefeys, M.: Finding the exact rotation between two images independently of the translation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 696–709. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_50

    Chapter  Google Scholar 

  50. Ventura, J., Arth, C., Lepetit, V.: An efficient minimal solution for multi-camera motion. In: IEEE International Conference on Computer Vision (ICCV), pp. 747–755 (2015)

    Google Scholar 

  51. Camposeco, F., Cohen, A., Pollefeys, M., Sattler, T.: Hybrid camera pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 136–144 (2018)

    Google Scholar 

  52. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2969–2976 (2011)

    Google Scholar 

  53. Ke, T., Roumeliotis, S.I.: An efficient algebraic solution to the perspective-three-point problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4618–4626 (2017)

    Google Scholar 

  54. Wang, P., Xu, G., Wang, Z., Cheng, Y.: An efficient solution to the perspective-three-point pose problem. Comput. Vis. Image Underst. (CVIU) 166, 81–87 (2018)

    Article  Google Scholar 

  55. Persson, M., Nordberg, K.: Lambda twist: an accurate fast robust perspective three point (P3P) solver. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_20

    Chapter  Google Scholar 

  56. Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the generalized pose-and-scale problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 422–429 (2014)

    Google Scholar 

  57. Camposeco, F., Sattler, T., Pollefeys, M.: Minimal solvers for generalized pose and scale estimation from two rays and one point. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 202–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_13

    Chapter  Google Scholar 

  58. Pless, R.: Using many cameras as one. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, p. 587 (2003)

    Google Scholar 

  59. Sturm, P.: Multi-view geometry for general camera models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  60. Li, H., Hartley, R., Kim, J.: A linear approach to motion estimation using generalized camera models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  61. Kneip, L., Li, H.: Efficient computation of relative pose for multi-camera systems. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  62. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: CVPR (2019)

    Google Scholar 

  63. Elbaz, G., Avraham, T., Fischer, A.: 3D point cloud registration for localization using a deep neural network auto-encoder. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2017)

    Google Scholar 

  64. Khoury, M., Zhou, Q.Y., Koltun, V.: Learning compact geometric features. In: IEEE International Conference on Computer Vision (ICCV), pp. 153–161 (2017)

    Google Scholar 

  65. Zhou, L., et al.: Learning and matching multi-view descriptors for registration of point clouds. In: European Conference on Computer Vision (ECCV), pp. 505–522 (2018)

    Google Scholar 

  66. Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: European Conference on Computer Vision (ECCV), pp. 602–618 (2018)

    Google Scholar 

  67. Deng, H., Birdal, T., Ilic, S.: 3D local features for direct pairwise registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  68. Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., Song, S.: DeepVCP: an end-to-end deep neural network for point cloud registration. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  69. Ding, L., Feng, C.: DeepMapping: unsupervised map estimation from multiple point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  70. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  71. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: PointNetLK: robust & efficient point cloud registration using PointNet. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7163–7172 (2019)

    Google Scholar 

  72. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  73. Chatterjee, A., Govindu, V.M.: Robust relative rotation averaging. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 40, 958–972 (2018)

    Article  Google Scholar 

  74. Huang, X., Liang, Z., Zhou, X., Xie, Y., Guibas, L., Huang, Q.: Learning transformation synchronization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  75. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  76. Mellado, N., Mitra, N., Aiger, D.: SUPER 4PCS: fast global pointcloud registration via smart indexing. In: Computer Graphics Forum (Proceedings of the EUROGRAPHICS), vol. 33, pp. 205–215 (2014)

    Google Scholar 

  77. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012). https://doi.org/10.1007/s10589-011-9401-7

    Article  MathSciNet  MATH  Google Scholar 

  78. Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78, 036706 (2008)

    Article  Google Scholar 

  79. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. U.S.A. (PNAS) 104, 418–423 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhant Ranade .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 68208 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranade, S., Yu, X., Kakkar, S., Miraldo, P., Ramalingam, S. (2021). Mapping of Sparse 3D Data Using Alternating Projection. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69525-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69524-8

  • Online ISBN: 978-3-030-69525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics