Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Benchmark of Ocular Disease Intelligent Recognition: One Shot for Multi-disease Detection

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12614))

Included in the following conference series:

Abstract

In ophthalmology, early fundus screening is an economic and effective way to prevent blindness caused by ophthalmic diseases. Clinically, due to the lack of medical resources, manual diagnosis is time-consuming and may delay the condition. With the development of deep learning, some researches on ophthalmic diseases have achieved good results, however, most of them are just based on one disease. During fundus screening, ophthalmologists usually give diagnoses of multi-disease on binocular fundus image, so we release a dataset with 8 diseases to meet the real medical scene, which contains 10,000 fundus images from both eyes of 5,000 patients. We did some benchmark experiments on it through some state-of-the-art deep neural networks. We found simply increasing the scale of network cannot bring good results for multi-disease classification, and a well-structured feature fusion method combines characteristics of multi-disease is needed. Through this work, we hope to advance the research of related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 18 Feb 2020

  2. Alqudah, A.M.: AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med. Biol. Eng. Comput. 58(1), 41–53 (2020)

    Article  MathSciNet  Google Scholar 

  3. Asgari, R., et al.: Multiclass segmentation as multitask learning for drusen segmentation in retinal optical coherence tomography. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 192–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_22

    Chapter  Google Scholar 

  4. Brandl, C., et al.: Features of age-related macular degeneration in the general adults and their dependency on age, sex, and smoking: results from the German KORA study. PLOS ONE 11(11), e0167181 (2016)

    Google Scholar 

  5. Chelaramani, S., Gupta, M., Agarwal, V., Gupta, P., Habash, R.: Multi-task learning for fine-grained eye disease prediction. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 734–749. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_57

    Chapter  Google Scholar 

  6. Chen, X., et al.: Multiple ocular diseases classification with graph regularized probabilistic multi-label learning. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_9

    Chapter  Google Scholar 

  7. Choi, J.Y., Yoo, T.K., Seo, J.G., Kwak, J., Um, T.T., Rim, T.H.: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLOS ONE 12(11), e0187336 (2017)

    Google Scholar 

  8. Costagliola, C., Dell’Omo, R., Romano, M.R., Rinaldi, M., Zeppa, L., Parmeggiani, F.: Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Exp. Opin. Pharmacother. 10(16), 2663–2677 (2009)

    Google Scholar 

  9. Decencière, E., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)

    Article  Google Scholar 

  10. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  11. Foong, A.W., et al.: Rationale and methodology for a population-based study of eye diseases in Malay people: The Singapore Malay eye study (SiMES). Ophthalmic Epidemiol. 14(1), 25–35 (2007)

    Article  Google Scholar 

  12. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  13. García-Floriano, A., Ferreira-Santiago, Á., Camacho-Nieto, O., Yáñez-Márquez, C.: A machine learning approach to medical image classification: detecting age-related macular degeneration in fundus images. Comput. Electr. Eng. 75, 218–229 (2019)

    Article  Google Scholar 

  14. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  15. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  16. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  17. Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D.: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE Trans. Med. Imaging 29(1), 159–168 (2009)

    Google Scholar 

  18. Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., Kang, H.: Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf. Sci. 501, 511–522 (2019)

    Article  Google Scholar 

  19. Mehta, P., Lee, A.Y., Lee, C., Balazinska, M., Rokem, A.: Multilabel multiclass classification of OCT images augmented with age, gender and visual acuity data. bioRxiv, 316349 (2018)

    Google Scholar 

  20. Mokhtari, M., et al.: Local comparison of cup to disc ratio in right and left eyes based on fusion of color fundus images and OCT B-scans. Inf. Fusion 51, 30–41 (2019)

    Article  Google Scholar 

  21. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018)

    Article  Google Scholar 

  22. Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)

    Article  Google Scholar 

  23. Rasti, R., Rabbani, H., Mehridehnavi, A., Hajizadeh, F.: Macular oct classification using a multi-scale convolutional neural network ensemble. IEEE Trans. Med. Imaging 37(4), 1024–1034 (2017)

    Article  Google Scholar 

  24. Schlegl, T., et al.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018)

    Article  Google Scholar 

  25. Sengupta, S., Singh, A., Leopold, H.A., Gulati, T., Lakshminarayanan, V.: Ophthalmic diagnosis using deep learning with fundus images - a critical review. Artif. Intell. Med. 102, 101758 (2019)

    Google Scholar 

  26. Tan, J.H., et al.: Age-related macular degeneration detection using deep convolutional neural network. Fut. Gener. Comput. Syst. 87, 127–135 (2018)

    Article  Google Scholar 

  27. Ting, D.S.W., Wu, W.C., Toth, C.: Deep learning for retinopathy of prematurity screening. Br. J. Ophthalmol. 103(5), 577–579 (2019)

    Article  Google Scholar 

  28. Wang, X., Ju, L., Zhao, X., Ge, Z.: Retinal abnormalities recognition using regional multitask learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_4

    Chapter  Google Scholar 

  29. Wong, T., Aiello, L., Ferris, F., Gupta, N., Kawasaki, R., Lansingh, V., et al.: Updated 2017 ICO guidelines for diabetic eye care. Int. J. Ophthalmol, 1–33 (2017)

    Google Scholar 

  30. Zhang, F., et al.: Automated quality classification of colour fundus images based on a modified residual dense block network. SIViP 14(1), 215–223 (2019). https://doi.org/10.1007/s11760-019-01544-y

    Article  Google Scholar 

  31. Zhang, H., et al.: Automatic cataract grading methods based on deep learning. Comput. Meth. Program. Biomed. 182, 104978 (2019)

    Article  Google Scholar 

  32. Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068. IEEE (2010)

    Google Scholar 

  33. Zhou, Y., Li, G., Li, H.: Automatic cataract classification using deep neural network with discrete state transition. IEEE Trans. Med. Imaging 39(2), 436–446 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation (61872200), the Open Project Fund of State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences No. CARCH201905, the Natural Science Foundation of Tianjin (19JCZDJC31600, 18YFYZCG00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Li, T., Hu, C., Wang, K., Kang, H. (2021). A Benchmark of Ocular Disease Intelligent Recognition: One Shot for Multi-disease Detection. In: Wolf, F., Gao, W. (eds) Benchmarking, Measuring, and Optimizing. Bench 2020. Lecture Notes in Computer Science(), vol 12614. Springer, Cham. https://doi.org/10.1007/978-3-030-71058-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71058-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71057-6

  • Online ISBN: 978-3-030-71058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics