Abstract
In ophthalmology, early fundus screening is an economic and effective way to prevent blindness caused by ophthalmic diseases. Clinically, due to the lack of medical resources, manual diagnosis is time-consuming and may delay the condition. With the development of deep learning, some researches on ophthalmic diseases have achieved good results, however, most of them are just based on one disease. During fundus screening, ophthalmologists usually give diagnoses of multi-disease on binocular fundus image, so we release a dataset with 8 diseases to meet the real medical scene, which contains 10,000 fundus images from both eyes of 5,000 patients. We did some benchmark experiments on it through some state-of-the-art deep neural networks. We found simply increasing the scale of network cannot bring good results for multi-disease classification, and a well-structured feature fusion method combines characteristics of multi-disease is needed. Through this work, we hope to advance the research of related fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 18 Feb 2020
Alqudah, A.M.: AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med. Biol. Eng. Comput. 58(1), 41–53 (2020)
Asgari, R., et al.: Multiclass segmentation as multitask learning for drusen segmentation in retinal optical coherence tomography. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 192–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_22
Brandl, C., et al.: Features of age-related macular degeneration in the general adults and their dependency on age, sex, and smoking: results from the German KORA study. PLOS ONE 11(11), e0167181 (2016)
Chelaramani, S., Gupta, M., Agarwal, V., Gupta, P., Habash, R.: Multi-task learning for fine-grained eye disease prediction. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 734–749. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_57
Chen, X., et al.: Multiple ocular diseases classification with graph regularized probabilistic multi-label learning. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_9
Choi, J.Y., Yoo, T.K., Seo, J.G., Kwak, J., Um, T.T., Rim, T.H.: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLOS ONE 12(11), e0187336 (2017)
Costagliola, C., Dell’Omo, R., Romano, M.R., Rinaldi, M., Zeppa, L., Parmeggiani, F.: Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Exp. Opin. Pharmacother. 10(16), 2663–2677 (2009)
Decencière, E., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)
Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)
Foong, A.W., et al.: Rationale and methodology for a population-based study of eye diseases in Malay people: The Singapore Malay eye study (SiMES). Ophthalmic Epidemiol. 14(1), 25–35 (2007)
Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)
García-Floriano, A., Ferreira-Santiago, Á., Camacho-Nieto, O., Yáñez-Márquez, C.: A machine learning approach to medical image classification: detecting age-related macular degeneration in fundus images. Comput. Electr. Eng. 75, 218–229 (2019)
He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)
Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D.: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE Trans. Med. Imaging 29(1), 159–168 (2009)
Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., Kang, H.: Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf. Sci. 501, 511–522 (2019)
Mehta, P., Lee, A.Y., Lee, C., Balazinska, M., Rokem, A.: Multilabel multiclass classification of OCT images augmented with age, gender and visual acuity data. bioRxiv, 316349 (2018)
Mokhtari, M., et al.: Local comparison of cup to disc ratio in right and left eyes based on fusion of color fundus images and OCT B-scans. Inf. Fusion 51, 30–41 (2019)
Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018)
Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)
Rasti, R., Rabbani, H., Mehridehnavi, A., Hajizadeh, F.: Macular oct classification using a multi-scale convolutional neural network ensemble. IEEE Trans. Med. Imaging 37(4), 1024–1034 (2017)
Schlegl, T., et al.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018)
Sengupta, S., Singh, A., Leopold, H.A., Gulati, T., Lakshminarayanan, V.: Ophthalmic diagnosis using deep learning with fundus images - a critical review. Artif. Intell. Med. 102, 101758 (2019)
Tan, J.H., et al.: Age-related macular degeneration detection using deep convolutional neural network. Fut. Gener. Comput. Syst. 87, 127–135 (2018)
Ting, D.S.W., Wu, W.C., Toth, C.: Deep learning for retinopathy of prematurity screening. Br. J. Ophthalmol. 103(5), 577–579 (2019)
Wang, X., Ju, L., Zhao, X., Ge, Z.: Retinal abnormalities recognition using regional multitask learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_4
Wong, T., Aiello, L., Ferris, F., Gupta, N., Kawasaki, R., Lansingh, V., et al.: Updated 2017 ICO guidelines for diabetic eye care. Int. J. Ophthalmol, 1–33 (2017)
Zhang, F., et al.: Automated quality classification of colour fundus images based on a modified residual dense block network. SIViP 14(1), 215–223 (2019). https://doi.org/10.1007/s11760-019-01544-y
Zhang, H., et al.: Automatic cataract grading methods based on deep learning. Comput. Meth. Program. Biomed. 182, 104978 (2019)
Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068. IEEE (2010)
Zhou, Y., Li, G., Li, H.: Automatic cataract classification using deep neural network with discrete state transition. IEEE Trans. Med. Imaging 39(2), 436–446 (2020)
Acknowledgements
This work is partially supported by the National Natural Science Foundation (61872200), the Open Project Fund of State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences No. CARCH201905, the Natural Science Foundation of Tianjin (19JCZDJC31600, 18YFYZCG00060).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, N., Li, T., Hu, C., Wang, K., Kang, H. (2021). A Benchmark of Ocular Disease Intelligent Recognition: One Shot for Multi-disease Detection. In: Wolf, F., Gao, W. (eds) Benchmarking, Measuring, and Optimizing. Bench 2020. Lecture Notes in Computer Science(), vol 12614. Springer, Cham. https://doi.org/10.1007/978-3-030-71058-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-71058-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71057-6
Online ISBN: 978-3-030-71058-3
eBook Packages: Computer ScienceComputer Science (R0)