Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multilingual Voice Impersonation Dataset and Evaluation

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2020)

Abstract

Well-known vulnerabilities of voice-based biometrics are impersonation, replay attacks, artificial signals/speech synthesis, and voice conversion. Among these, voice impersonation is the obvious and simplest way of attack that can be performed. Though voice impersonation by amateurs is considered not a severe threat to ASV systems, studies show that professional impersonators can successfully influence the performance of the voice-based biometrics system. In this work, we have created a novel voice impersonation attack dataset and studied the impact of voice impersonation on automatic speaker verification systems. The dataset consisting of celebrity speeches from 3 different languages, and their impersonations are acquired from YouTube. The vulnerability of speaker verification is observed among all three languages on both the classical i-vector based method and the deep neural network-based x-vector method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    VoxCeleb Models: http://kaldi-asr.org/models/m7.

  2. 2.

    Kaldi GitHub:https://github.com/kaldi-asr/kaldi.

References

  1. Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011). https://doi.org/10.1109/TASL.2010.2064307

    Article  Google Scholar 

  2. Farrús Cabeceran, M., Wagner, M., Erro Eslava, D., Hernando Pericás, F.J.: Automatic speaker recognition as a measurement of voice imitation and conversion. Int. J. Speech Lang. Law 1(17), 119–142 (2010)

    Google Scholar 

  3. Hautamäki, R.G., Kinnunen, T., Hautamäki, V., Laukkanen, A.M.: Automatic versus human speaker verification: the case of voice mimicry. Speech Commun. 72, 13–31 (2015)

    Article  Google Scholar 

  4. ISO/IEC JTC1 SC37 Biometrics: ISO/IEC 19795–1:2006. Information Technology - Biometric Performance Testing and Reporting - Part 1: Principles and Framework. International Organization for Standardization and International Electrotechnical Committee, March 2006

    Google Scholar 

  5. ISO/IEC JTC1 SC37 Biometrics: ISO/IEC FDIS 30107–3. Information Technology - Biometric presentation attack detection - Part 3: Testing and Reporting. International Organization for Standardization (2017)

    Google Scholar 

  6. Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: from features to supervectors. Speech Commun. 52(1), 12–40 (2010)

    Article  Google Scholar 

  7. Kinnunen, T., et al.: The ASVspoof 2017 challenge: assessing the limits of replay spoofing attack detection (2017)

    Google Scholar 

  8. Lau, Y.W., Tran, D., Wagner, M.: Testing voice mimicry with the YOHO speaker verification corpus. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 15–21. Springer, Heidelberg (2005). https://doi.org/10.1007/11554028_3

    Chapter  Google Scholar 

  9. Lau, Y.W., Wagner, M., Tran, D.: Vulnerability of speaker verification to voice mimicking. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, pp. 145–148, October 2004. https://doi.org/10.1109/ISIMP.2004.1434021

  10. Mariéthoz, J., Bengio, S.: Can a professional imitator fool a GMM-based speaker verification system? Technical report, IDIAP (2005)

    Google Scholar 

  11. Nagrani, A., Chung, J.S., Zisserman, A.: VoxCeleb: a large-scale speaker identification dataset. In: Lacerda, F. (ed.) Interspeech 2017, 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, 20–24 August 2017, pp. 2616–2620. ISCA (2017). https://doi.org/10.21437/Interspeech. http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0950.html

  12. Panjwani, S., Prakash, A.: Crowdsourcing attacks on biometric systems. In: Symposium On Usable Privacy and Security (SOUPS 2014), pp. 257–269 (2014)

    Google Scholar 

  13. Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. No. CONF, IEEE Signal Processing Society (2011)

    Google Scholar 

  14. Prince, S., Li, P., Fu, Y., Mohammed, U., Elder, J.: Probabilistic models for inference about identity. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 144–157 (2012)

    Article  Google Scholar 

  15. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors: robust dnn embeddings for speaker recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5329–5333, April 2018. https://doi.org/10.1109/ICASSP.2018.8461375

  16. Todisco, M., et al.: ASVspoof 2019: future horizons in spoofed and fake audio detection. arXiv preprint arXiv:1904.05441 (2019)

  17. Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and countermeasures for speaker verification: a survey. Speech Commun. 66, 130–153 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hareesh Mandalapu , Raghavendra Ramachandra or Christoph Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandalapu, H., Ramachandra, R., Busch, C. (2021). Multilingual Voice Impersonation Dataset and Evaluation. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71711-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71710-0

  • Online ISBN: 978-3-030-71711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics