Abstract
Several applications involve the automatic analysis of hand images such as biometry, digit-ratio measurements, and gesture recognition. A key problem common to these applications is the separation of hands from the background. Color based approaches struggle to detect the boundaries of the hand and the background if these have similar colors. This paper thus describes work-in-progress with a spatial approach for finger feature point detection based on the circular Hough transforms. The main challenge is to interpret finger feature points in the patterns of circles amidst noise. The approach was implemented in java and tested on a set of images. The results were assessed using manual visual inspection. Such spatial approaches hold potential for more robust and flexible hand related image analysis application. Moreover, these approaches could also give faster algorithms as there is no need for image binarization and threshold optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fukumoto, M., Suenaga, Y., Mase, K.: Finger-Pointer: pointing interface by image processing. Comput. Graph. 18, 633–642 (1994)
Coetzee, L., Botha, E.C.: Fingerprint recognition in low quality images. Pattern Recogn. 26, 1441–1460 (1993)
Sandnes, F.E.: Measuring 2D: 4D finger length ratios with Smartphone Cameras. In: Proceedings of IEEE SMC 2014, pp. 1712–1716. IEEE Computer Society Press (2014)
Freeman, W.T., Roth, M.: Orientation Histograms for Hand Gesture Recognition. Technical report, Mitsubishi Electric Research Laboratories, Cambridge Research Center, TR-94–03a (1994)
Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)
Hou, G., Cui, R., Zhang, C.: A real-time hand pose estimation system with retrieval. In: Proceedings of IEEE SMC 2015, pp. 1738–1744. IEEE Computer Society Press (2015)
Ratha, N.K., Chen, S., Jain, A.K.: Adaptive flow orientation-based feature extraction in fingerprint images. Pattern Recogn. 28, 1657–1672 (1995)
Kumar, A., Zhang, D.: Personal recognition using hand shape and texture. IEEE Trans. Image Process. 15, 2454–2461 (2006)
Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recogn. 42, 1408–1418 (2009)
Cappelli, R., Ferrara, M., Maio, D.: A fast and accurate palmprint recognition system based on minutiae. IEEE Trans. Syst. Man Cybern. Part B 42, 956–962 (2012)
Wang, X., Lei, L., Wang, M.: Palmprint verification based on 2D–Gabor wavelet and pulse-coupled neural network. Knowl. Based Syst. 27, 451–455 (2012)
Sandnes, F.E.: An automatic two-hand 2D: 4D finger-ratio measurement algorithm for flatbed scanned images. In: Proceedings of IEEE SMC 2015, pp. 1203–1208. IEEE Computer Society Press (2015)
Sandnes, F.E.: A two-stage binarizing algorithm for automatic 2D: 4D finger ratio measurement of hands with non-separated fingers. In: proceedings of 11th International Conference on Innovations in Information Technology (IIT 2015), pp. 178–183. IEEE Computer Society Press (2015)
Koch, R., Haßlmeyer, E., Tantinger, D., Rulsch, M., Weigand, C., Struck, M.: Development and implementation of algorithms for automatic and robust measurement of the 2D: 4D digit ratio using image data. Curr. Dir. Biomed. Eng. 1, 220–223 (2015)
Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)
Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40, 1106–1122 (2007)
Sandnes, F.E., Neyse, L., Huang, Y.-P.: Simple and practical skin detection with static RGB-color lookup tables: a visualization-based study. In: Proceedings of IEEE SMC 2016, IEEE Computer Society Press (2016)
Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recogn. Lett. 7, 37–43 (1988)
Liang, H., Yuan, J., Thalmann, D.: 3D fingertip and palm tracking in depth image sequences. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 785–788. ACM (2012)
Maisto, M., Panella, M., Liparulo, L., Proietti, A.: . IEEE J. Emerg. Sel. Topics Circ. Syst. 3(2), 272–283 (2013)
Alamsyah, D., Fanany, M.I.: Particle filter for 3D fingertips tracking from color and depth images with occlusion handling. In: 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 445–449. IEEE (2013)
Lin, Q., Chen, J., Zhang, J., Yao, L.: A reliable hand tracking method using kinect. In: 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), pp. 706–710. IEEE (2019)
Silanon, K., Suvonvorn, N.: Fingertips tracking based active contour for general HCI application. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 309–316. Springer, Singapore (2014). https://doi.org/10.1007/978-981-4585-18-7_35
Wu, G., Kang, W.: Vision-based fingertip tracking utilizing curvature points clustering and hash model representation. IEEE Trans. Multimedia 19(8), 1730–1741 (2017)
Higuchi, M., Komuro, T.: Robust finger tracking for gesture control of mobile devices using contour and interior information of a finger. ITE Trans. Media Technol. Appl. 1(3), 226–236 (2013)
Li, D., Wen, G., Kuai, Y.: Collaborative convolution operators for real-time coarse-to-fine tracking. IEEE Access 6, 14357–14366 (2018)
Li, D., Wen, G., Kuai, Y., Xiao, J., Porikli, F.: Learning target-aware correlation filters for visual tracking. J. Vis. Commun. Image Represent. 58, 149–159 (2019)
Liu, W., Li, D., Tang, X.: Autocorrelated correlation filter for visual tracking. J. Electron. Imaging 28(3), 033038 (2019)
Grzejszczak, T., Molle, R., Roth, R.: Tracking of dynamic gesture fingertips position in video sequence. Arch. Control Sci. 30 (2020)
Wu, G., Kang, W.: Robust fingertip detection in a complex environment. IEEE Trans. Multimedia 18(6), 978–987 (2016)
Baldauf, M., Zambanini, S., Fröhlich, P., Reichl, P.: Markerless visual fingertip detection for natural mobile device interaction. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 539–544 (2011)
Bhuyan, M.K., Neog, D.R., Kar, M.K.: Fingertip detection for hand pose recognition. Int. J. Comput. Sci. Eng. 4(3), 501 (2012)
Do, M., Asfour, T., Dillmann, R.: Particle filter-based fingertip tracking with circular hough transform features. In: Proceedings of International Conference on Machine Vision Applications, Japan (2011)
Hasan, M.M., Mishra, P.K.: Real time fingers and palm locating using dynamic circle templates. Int. J. Comput. Appl. 41(6) (2012)
Alam, M.J., Chowdhury, M.: Detection of fingertips based on the combination of color information and circle detection. In: 2013 IEEE 8th International Conference on Industrial and Information Systems, pp. 572–576. IEEE (2013)
Biswas, A.: Finger detection for hand gesture recognition using circular hough transform. In: Bera, R., Sarkar, S.K., Chakraborty, S. (eds.) Advances in Communication, Devices and Networking. LNEE, vol. 462, pp. 651–660. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7901-6_71
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sandnes, F.E. (2021). Exploring Circular Hough Transforms for Detecting Hand Feature Points in Noisy Images from Ghost-Circle Patterns. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-71711-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71710-0
Online ISBN: 978-3-030-71711-7
eBook Packages: Computer ScienceComputer Science (R0)