Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring Circular Hough Transforms for Detecting Hand Feature Points in Noisy Images from Ghost-Circle Patterns

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1382))

Included in the following conference series:

  • 624 Accesses

Abstract

Several applications involve the automatic analysis of hand images such as biometry, digit-ratio measurements, and gesture recognition. A key problem common to these applications is the separation of hands from the background. Color based approaches struggle to detect the boundaries of the hand and the background if these have similar colors. This paper thus describes work-in-progress with a spatial approach for finger feature point detection based on the circular Hough transforms. The main challenge is to interpret finger feature points in the patterns of circles amidst noise. The approach was implemented in java and tested on a set of images. The results were assessed using manual visual inspection. Such spatial approaches hold potential for more robust and flexible hand related image analysis application. Moreover, these approaches could also give faster algorithms as there is no need for image binarization and threshold optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukumoto, M., Suenaga, Y., Mase, K.: Finger-Pointer: pointing interface by image processing. Comput. Graph. 18, 633–642 (1994)

    Article  Google Scholar 

  2. Coetzee, L., Botha, E.C.: Fingerprint recognition in low quality images. Pattern Recogn. 26, 1441–1460 (1993)

    Article  Google Scholar 

  3. Sandnes, F.E.: Measuring 2D: 4D finger length ratios with Smartphone Cameras. In: Proceedings of IEEE SMC 2014, pp. 1712–1716. IEEE Computer Society Press (2014)

    Google Scholar 

  4. Freeman, W.T., Roth, M.: Orientation Histograms for Hand Gesture Recognition. Technical report, Mitsubishi Electric Research Laboratories, Cambridge Research Center, TR-94–03a (1994)

    Google Scholar 

  5. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)

    Article  Google Scholar 

  6. Hou, G., Cui, R., Zhang, C.: A real-time hand pose estimation system with retrieval. In: Proceedings of IEEE SMC 2015, pp. 1738–1744. IEEE Computer Society Press (2015)

    Google Scholar 

  7. Ratha, N.K., Chen, S., Jain, A.K.: Adaptive flow orientation-based feature extraction in fingerprint images. Pattern Recogn. 28, 1657–1672 (1995)

    Article  Google Scholar 

  8. Kumar, A., Zhang, D.: Personal recognition using hand shape and texture. IEEE Trans. Image Process. 15, 2454–2461 (2006)

    Article  Google Scholar 

  9. Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recogn. 42, 1408–1418 (2009)

    Article  Google Scholar 

  10. Cappelli, R., Ferrara, M., Maio, D.: A fast and accurate palmprint recognition system based on minutiae. IEEE Trans. Syst. Man Cybern. Part B 42, 956–962 (2012)

    Article  Google Scholar 

  11. Wang, X., Lei, L., Wang, M.: Palmprint verification based on 2D–Gabor wavelet and pulse-coupled neural network. Knowl. Based Syst. 27, 451–455 (2012)

    Article  Google Scholar 

  12. Sandnes, F.E.: An automatic two-hand 2D: 4D finger-ratio measurement algorithm for flatbed scanned images. In: Proceedings of IEEE SMC 2015, pp. 1203–1208. IEEE Computer Society Press (2015)

    Google Scholar 

  13. Sandnes, F.E.: A two-stage binarizing algorithm for automatic 2D: 4D finger ratio measurement of hands with non-separated fingers. In: proceedings of 11th International Conference on Innovations in Information Technology (IIT 2015), pp. 178–183. IEEE Computer Society Press (2015)

    Google Scholar 

  14. Koch, R., Haßlmeyer, E., Tantinger, D., Rulsch, M., Weigand, C., Struck, M.: Development and implementation of algorithms for automatic and robust measurement of the 2D: 4D digit ratio using image data. Curr. Dir. Biomed. Eng. 1, 220–223 (2015)

    Article  Google Scholar 

  15. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)

    Article  Google Scholar 

  16. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40, 1106–1122 (2007)

    Article  Google Scholar 

  17. Sandnes, F.E., Neyse, L., Huang, Y.-P.: Simple and practical skin detection with static RGB-color lookup tables: a visualization-based study. In: Proceedings of IEEE SMC 2016, IEEE Computer Society Press (2016)

    Google Scholar 

  18. Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recogn. Lett. 7, 37–43 (1988)

    Article  Google Scholar 

  19. Liang, H., Yuan, J., Thalmann, D.: 3D fingertip and palm tracking in depth image sequences. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 785–788. ACM (2012)

    Google Scholar 

  20. Maisto, M., Panella, M., Liparulo, L., Proietti, A.: . IEEE J. Emerg. Sel. Topics Circ. Syst. 3(2), 272–283 (2013)

    Google Scholar 

  21. Alamsyah, D., Fanany, M.I.: Particle filter for 3D fingertips tracking from color and depth images with occlusion handling. In: 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 445–449. IEEE (2013)

    Google Scholar 

  22. Lin, Q., Chen, J., Zhang, J., Yao, L.: A reliable hand tracking method using kinect. In: 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), pp. 706–710. IEEE (2019)

    Google Scholar 

  23. Silanon, K., Suvonvorn, N.: Fingertips tracking based active contour for general HCI application. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 309–316. Springer, Singapore (2014). https://doi.org/10.1007/978-981-4585-18-7_35

    Chapter  Google Scholar 

  24. Wu, G., Kang, W.: Vision-based fingertip tracking utilizing curvature points clustering and hash model representation. IEEE Trans. Multimedia 19(8), 1730–1741 (2017)

    Article  Google Scholar 

  25. Higuchi, M., Komuro, T.: Robust finger tracking for gesture control of mobile devices using contour and interior information of a finger. ITE Trans. Media Technol. Appl. 1(3), 226–236 (2013)

    Article  Google Scholar 

  26. Li, D., Wen, G., Kuai, Y.: Collaborative convolution operators for real-time coarse-to-fine tracking. IEEE Access 6, 14357–14366 (2018)

    Article  Google Scholar 

  27. Li, D., Wen, G., Kuai, Y., Xiao, J., Porikli, F.: Learning target-aware correlation filters for visual tracking. J. Vis. Commun. Image Represent. 58, 149–159 (2019)

    Article  Google Scholar 

  28. Liu, W., Li, D., Tang, X.: Autocorrelated correlation filter for visual tracking. J. Electron. Imaging 28(3), 033038 (2019)

    Google Scholar 

  29. Grzejszczak, T., Molle, R., Roth, R.: Tracking of dynamic gesture fingertips position in video sequence. Arch. Control Sci. 30 (2020)

    Google Scholar 

  30. Wu, G., Kang, W.: Robust fingertip detection in a complex environment. IEEE Trans. Multimedia 18(6), 978–987 (2016)

    Article  Google Scholar 

  31. Baldauf, M., Zambanini, S., Fröhlich, P., Reichl, P.: Markerless visual fingertip detection for natural mobile device interaction. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 539–544 (2011)

    Google Scholar 

  32. Bhuyan, M.K., Neog, D.R., Kar, M.K.: Fingertip detection for hand pose recognition. Int. J. Comput. Sci. Eng. 4(3), 501 (2012)

    Google Scholar 

  33. Do, M., Asfour, T., Dillmann, R.: Particle filter-based fingertip tracking with circular hough transform features. In: Proceedings of International Conference on Machine Vision Applications, Japan (2011)

    Google Scholar 

  34. Hasan, M.M., Mishra, P.K.: Real time fingers and palm locating using dynamic circle templates. Int. J. Comput. Appl. 41(6) (2012)

    Google Scholar 

  35. Alam, M.J., Chowdhury, M.: Detection of fingertips based on the combination of color information and circle detection. In: 2013 IEEE 8th International Conference on Industrial and Information Systems, pp. 572–576. IEEE (2013)

    Google Scholar 

  36. Biswas, A.: Finger detection for hand gesture recognition using circular hough transform. In: Bera, R., Sarkar, S.K., Chakraborty, S. (eds.) Advances in Communication, Devices and Networking. LNEE, vol. 462, pp. 651–660. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7901-6_71

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frode Eika Sandnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandnes, F.E. (2021). Exploring Circular Hough Transforms for Detecting Hand Feature Points in Noisy Images from Ghost-Circle Patterns. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71711-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71710-0

  • Online ISBN: 978-3-030-71711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics